PD-L1 Promotes Immunological Tolerance and Enhances Visual Protection of hESC-RPE Grafts in Retinal Degeneration

Bowen Li , Xue Zhang , Yajie Fang , Min Chen , Qiyou Li , Yuxiao Zeng , Chunge Ren , Chengang Wang , Yingxue Lv , Jia Lu , Hongling Liu , Yong Liu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (8) : e70007

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (8) : e70007 DOI: 10.1111/cpr.70007
ORIGINAL ARTICLE

PD-L1 Promotes Immunological Tolerance and Enhances Visual Protection of hESC-RPE Grafts in Retinal Degeneration

Author information +
History +
PDF

Abstract

Immune rejection is a major barrier to the successful human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) transplantation for age-related macular degeneration (AMD). Traditional strategies to mitigate immune rejection involve ablating major histocompatibility complex (MHC) molecules on hESC-RPE. An alternative approach is immune checkpoint overexpression, avoiding natural killer (NK) cell-mediated destruction due to MHC-I deficiency. Our study highlights the benefits of PD-L1 overexpression without requiring MHC gene deletion, which preserved the immunosuppressive functions of hESC-RPE on NK cells. In Vivo experiments in retinal degeneration models showed that PD-L1-expressing hESC-RPE grafts exhibited significantly higher survival, reduced apoptosis and enhanced visual protection. Single-cell transcriptomics revealed reduced immune activation and oxidative stress in PD-L1-overexpressing grafts. PD-L1's protective role was further evidenced by improved light transduction in host photoreceptors. These findings support PD-L1 overexpression as a promising strategy to improve the efficiency of hESC-RPE-based therapy for AMD.

Keywords

AMD / hESC-RPE transplantation / immune checkpoints / immune tolerance / PD-L1

Cite this article

Download citation ▾
Bowen Li, Xue Zhang, Yajie Fang, Min Chen, Qiyou Li, Yuxiao Zeng, Chunge Ren, Chengang Wang, Yingxue Lv, Jia Lu, Hongling Liu, Yong Liu. PD-L1 Promotes Immunological Tolerance and Enhances Visual Protection of hESC-RPE Grafts in Retinal Degeneration. Cell Proliferation, 2025, 58(8): e70007 DOI:10.1111/cpr.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Fleckenstein, S. Schmitz-Valckenberg, and U. Chakravarthy, “Age-Related Macular Degeneration: A Review,” Journal of the American Medical Association 331 (2024): 147-157, https://doi.org/10.1001/jama.2023.26074.

[2]

W. L. Wong, X. Su, X. Li, et al., “Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis,” Lancet Global Health 2 (2014): e106-e116, https://doi.org/10.1016/S2214-109X(13)70145-1.

[3]

Y.-K. Cho, D.-H. Park, and I.-C. Jeon, “Medication Trends for Age-Related Macular Degeneration,” International Journal of Molecular Sciences 22, no. 21 (2021): 11837, https://doi.org/10.3390/ijms222111837.

[4]

Age-Related Eye Disease Study Research Group, “A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8,” Archives of Ophthalmology 119 (2001): 1417-1436.

[5]

S. J. Bakri, J. E. Thorne, A. C. Ho, et al., “Safety and Efficacy of Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration: A Report by the American Academy of Ophthalmology,” Ophthalmology 126 (2019): 55-63, https://doi.org/10.1016/j.ophtha.2018.07.028.

[6]

J. S. Heier, E. M. Lad, F. G. Holz, et al., “Pegcetacoplan for the Treatment of Geographic Atrophy Secondary to Age-Related Macular Degeneration (OAKS and DERBY): Two Multicentre, Randomised, Double-Masked, Sham-Controlled, Phase 3 Trials,” Lancet 402 (2023): 1434-1448, https://doi.org/10.1016/S0140-6736(23)01520-9.

[7]

L. da Cruz, K. Fynes, O. Georgiadis, et al., “Phase 1 Clinical Study of an Embryonic Stem Cell-Derived Retinal Pigment Epithelium Patch in Age-Related Macular Degeneration,” Nature Biotechnology 36 (2018): 328-337, https://doi.org/10.1038/nbt.4114.

[8]

A. H. Kashani, J. S. Lebkowski, F. M. Rahhal, et al., “One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration,” Translational Vision Science & Technology 10 (2021): 13, https://doi.org/10.1167/tvst.10.10.13.

[9]

A. H. Kashani, J. S. Lebkowski, F. M. Rahhal, et al., “A Bioengineered Retinal Pigment Epithelial Monolayer for Advanced, Dry Age-Related Macular Degeneration,” Science Translational Medicine 10 (2018): eaao4097, https://doi.org/10.1126/scitranslmed.aao4097.

[10]

W. K. Song, K.-M. Park, H.-J. Kim, et al., “Treatment of Macular Degeneration Using Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Preliminary Results in Asian Patients,” Stem Cell Reports 4 (2015): 860-872, https://doi.org/10.1016/j.stemcr.2015.04.005.

[11]

S. D. Schwartz, C. D. Regillo, B. L. Lam, et al., “Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients With Age-Related Macular Degeneration and Stargardt's Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies,” Lancet 385 (2015): 509-516, https://doi.org/10.1016/S0140-6736(14)61376-3.

[12]

T. Maeda, M. Mandai, S. Sugita, C. Kime, and M. Takahashi, “Strategies of Pluripotent Stem Cell-Based Therapy for Retinal Degeneration: Update and Challenges,” Trends in Molecular Medicine 28 (2022): 388-404, https://doi.org/10.1016/j.molmed.2022.03.001.

[13]

T. J. McGill, J. Stoddard, L. M. Renner, et al., “Allogeneic iPSC-Derived RPE Cell Graft Failure Following Transplantation Into the Subretinal Space in Nonhuman Primates,” Investigative Ophthalmology & Visual Science 59 (2018): 1374-1383, https://doi.org/10.1167/iovs.17-22467.

[14]

E. B. Rodrigues, “Inflammation in Dry Age-Related Macular Degeneration,” Ophthalmologica 221 (2007): 143-152.

[15]

H. Oh, H. Takagi, C. Takagi, et al., “The Potential Angiogenic Role of Macrophages in the Formation of Choroidal Neovascular Membranes,” Investigative Ophthalmology & Visual Science 40 (1999): 1891-1898.

[16]

K. Nassar, S. Grisanti, E. Elfar, J. Lüke, M. Lüke, and S. Grisanti, “Serum Cytokines as Biomarkers for Age-Related Macular Degeneration,” Graefe's Archive for Clinical and Experimental Ophthalmology 253 (2015): 699-704, https://doi.org/10.1007/s00417-014-2738-8.

[17]

P. V. Algvere, P. Gouras, and E. Dafgård Kopp, “Long-Term Outcome of RPE Allografts in Non-Immunosuppressed Patients With AMD,” European Journal of Ophthalmology 9 (1999): 217-230.

[18]

Q. Ye, T.-C. Sung, J.-M. Yang, Q.-D. Ling, Y. He, and A. Higuchi, “Generation of Universal and Hypoimmunogenic Human Pluripotent Stem Cells,” Cell Proliferation 53 (2020): e12946, https://doi.org/10.1111/cpr.12946.

[19]

T. Deuse, X. Hu, A. Gravina, et al., “Hypoimmunogenic Derivatives of Induced Pluripotent Stem Cells Evade Immune Rejection in Fully Immunocompetent Allogeneic Recipients,” Nature Biotechnology 37 (2019): 252-258, https://doi.org/10.1038/s41587-019-0016-3.

[20]

X. Han, M. Wang, S. Duan, et al., “Generation of Hypoimmunogenic Human Pluripotent Stem Cells,” Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 10441-10446, https://doi.org/10.1073/pnas.1902566116.

[21]

A. Gravina, G. Tediashvili, Y. Zheng, et al., “Synthetic Immune Checkpoint Engagers Protect HLA-Deficient iPSCs and Derivatives From Innate Immune Cell Cytotoxicity,” Cell Stem Cell 30, no. 11 (2023): 1538-1548.e4, https://doi.org/10.1016/j.stem.2023.10.003.

[22]

J. Harding, K. Vintersten-Nagy, H. Yang, et al., “Immune-Privileged Tissues Formed From Immunologically Cloaked Mouse Embryonic Stem Cells Survive Long Term in Allogeneic Hosts,” Nature Biomedical Engineering 8 (2024): 427-442, https://doi.org/10.1038/s41551-023-01133-y.

[23]

R. Chimienti, T. Baccega, S. Torchio, et al., “Engineering of Immune Checkpoints B7-H3 and CD155 Enhances Immune Compatibility of MHC-I−/− iPSCs for β Cell Replacement,” Cell Reports 40 (2022): 111423, https://doi.org/10.1016/j.celrep.2022.111423.

[24]

W. Zhu, M. Li, J. Zou, et al., “Induction of Local Immunosuppression in Allogeneic Cell Transplantation by Cell-Type-Specific Expression of PD-L1 and CTLA4Ig,” Stem Cell Reports 18 (2023): 2344-2355, https://doi.org/10.1016/j.stemcr.2023.10.016.

[25]

S. Sugita, M. Mandai, H. Kamao, and M. Takahashi, “Immunological Aspects of RPE Cell Transplantation,” Progress in Retinal and Eye Research 84 (2021): 100950, https://doi.org/10.1016/j.preteyeres.2021.100950.

[26]

E. A. Philips, J. Liu, A. Kvalvaag, et al., “Transmembrane Domain-Driven PD-1 Dimers Mediate T Cell Inhibition,” Science Immunology 9 (2024): eade6256, https://doi.org/10.1126/sciimmunol.ade6256.

[27]

A. W. Taylor and T. F. Ng, “Negative Regulators That Mediate Ocular Immune Privilege,” Journal of Leukocyte Biology 103 (2018): 1179-1187, https://doi.org/10.1002/JLB.3MIR0817-337R.

[28]

W. Yang, H. Li, P. W. Chen, et al., “PD-L1 Expression on Human Ocular Cells and Its Possible Role in Regulating Immune-Mediated Ocular Inflammation,” Investigative Ophthalmology & Visual Science 50 (2009): 273-280, https://doi.org/10.1167/iovs.08-2397.

[29]

S. Sugita, “Role of Ocular Pigment Epithelial Cells in Immune Privilege,” Archivum Immunologiae et Therapiae Experimentalis (Warsz) 57 (2009): 263-268, https://doi.org/10.1007/s00005-009-0030-0.

[30]

Q. Gu, J. Wang, L. Wang, et al., “Accreditation of Biosafe Clinical-Grade Human Embryonic Stem Cells According to Chinese Regulations,” Stem Cell Reports 9 (2017): 366-380, https://doi.org/10.1016/j.stemcr.2017.04.017.

[31]

Y. Liu, H. W. Xu, L. Wang, et al., “Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium Transplants as a Potential Treatment for Wet Age-Related Macular Degeneration,” Cell Discovery 4 (2018): 50, https://doi.org/10.1038/s41421-018-0053-y.

[32]

W. Wu, Y. Zeng, Z. Li, Q. Li, H. Xu, and Z. Q. Yin, “Features Specific to Retinal Pigment Epithelium Cells Derived From Three-Dimensional Human Embryonic Stem Cell Cultures—A New Donor for Cell Therapy,” Oncotarget 7 (2016): 22819-22833, https://doi.org/10.18632/oncotarget.8185.

[33]

T. Zou, L. Gao, Y. Zeng, et al., “Organoid-Derived C-Kit+/SSEA4 Human Retinal Progenitor Cells Promote a Protective Retinal Microenvironment During Transplantation in Rodents,” Nature Communications 10 (2019): 1205, https://doi.org/10.1038/s41467-019-08961-0.

[34]

B. Dura, J.-Y. Choi, K. Zhang, et al., “scFTD-Seq: Freeze-Thaw Lysis Based, Portable Approach Toward Highly Distributed Single-Cell 3' mRNA Profiling,” Nucleic Acids Research 47 (2019): e16, https://doi.org/10.1093/nar/gky1173.

[35]

E. Mereu, A. Lafzi, C. Moutinho, et al., “Benchmarking Single-Cell RNA-Sequencing Protocols for Cell Atlas Projects,” Nature Biotechnology 38 (2020): 747-755, https://doi.org/10.1038/s41587-020-0469-4.

[36]

B. H. Parikh, P. Blakeley, K. Regha, et al., “Single-Cell Transcriptomics Reveals Maturation of Transplanted Stem Cell-Derived Retinal Pigment Epithelial Cells Toward Native State,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2214842120, https://doi.org/10.1073/pnas.2214842120.

[37]

L. P. Andrews, S. C. Butler, J. Cui, et al., “LAG-3 and PD-1 Synergize on CD8+ T Cells to Drive T Cell Exhaustion and Hinder Autocrine IFN-γ-Dependent Anti-Tumor Immunity,” Cell 187 (2024): 4355-4372.e22, https://doi.org/10.1016/j.cell.2024.07.016.

[38]

R. Yang, L. Sun, C.-F. Li, et al., “Galectin-9 Interacts With PD-1 and TIM-3 to Regulate T Cell Death and Is a Target for Cancer Immunotherapy,” Nature Communications 12 (2021): 832, https://doi.org/10.1038/s41467-021-21099-2.

[39]

M. A. ElTanbouly, Y. Zhao, E. Nowak, et al., “VISTA Is a Checkpoint Regulator for Naïve T Cell Quiescence and Peripheral Tolerance,” Science 367 (2020): eaay0524, https://doi.org/10.1126/science.aay0524.

[40]

Q. Huang, X. Wu, Z. Wang, et al., “The Primordial Differentiation of Tumor-Specific Memory CD8+ T Cells as Bona Fide Responders to PD-1/PD-L1 Blockade in Draining Lymph Nodes,” Cell 185, no. 22 (2022): 4049-4066.e25, https://doi.org/10.1016/j.cell.2022.09.020.

[41]

M. Idelson, R. Alper, A. Obolensky, et al., “Immunological Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells,” Stem Cell Reports 11 (2018): 681-695, https://doi.org/10.1016/j.stemcr.2018.07.009.

[42]

A. Jiao, C. Zhang, X. Wang, et al., “Single-Cell Sequencing Reveals the Evolution of Immune Molecules Across Multiple Vertebrate Species,” Journal of Advanced Research 55 (2024): 73-87, https://doi.org/10.1016/j.jare.2023.02.017.

[43]

Y. Wang, X. Yang, Q. Li, et al., “Single-Cell RNA Sequencing Reveals the Müller Subtypes and Inner Blood-Retinal Barrier Regulatory Network in Early Diabetic Retinopathy,” Frontiers in Molecular Neuroscience 15 (2022): 1048634, https://doi.org/10.3389/fnmol.2022.1048634.

[44]

L. Sun, R. Wang, G. Hu, et al., “Single Cell RNA Sequencing (scRNA-Seq) Deciphering Pathological Alterations in Streptozotocin-Induced Diabetic Retinas,” Experimental Eye Research 210 (2021): 108718, https://doi.org/10.1016/j.exer.2021.108718.

[45]

J. H. Kempen, C. W. Newcomb, T. L. Washington, et al., “Use of Immunosuppression and the Risk of Subsequent Overall or Cancer Mortality,” Ophthalmology 130 (2023): 1258-1268, https://doi.org/10.1016/j.ophtha.2023.07.023.

[46]

M. Rodríguez-Perálvarez, M. De la Mata, and A. K. Burroughs, “Liver Transplantation: Immunosuppression and Oncology,” Current Opinion in Organ Transplantation 19 (2014): 253-260, https://doi.org/10.1097/MOT.0000000000000069.

[47]

S. Petrus-Reurer, N. Winblad, P. Kumar, et al., “Generation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells Lacking Human Leukocyte Antigen Class I and II,” Stem Cell Reports 14 (2020): 648-662, https://doi.org/10.1016/j.stemcr.2020.02.006.

[48]

A. Koenig, C.-C. Chen, A. Marçais, et al., “Missing Self Triggers NK Cell-Mediated Chronic Vascular Rejection of Solid Organ Transplants,” Nature Communications 10 (2019): 5350, https://doi.org/10.1038/s41467-019-13113-5.

[49]

S. Sugita, Y. Iwasaki, K. Makabe, et al., “Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells From HLA Homozygous Donors,” Stem Cell Reports 7 (2016): 619-634, https://doi.org/10.1016/j.stemcr.2016.08.011.

[50]

S. Sugita, K. Makabe, Y. Iwasaki, S. Fujii, and M. Takahashi, “Natural Killer Cell Inhibition by HLA-E Molecules on Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelial Cells,” Investigative Ophthalmology & Visual Science 59 (2018): 1719-1731, https://doi.org/10.1167/iovs.17-22703.

[51]

L. Chen, V. Pai, R. Levinson, et al., “Constitutive Neuronal Expression of the Immune Regulator, Programmed Death 1 (PD-1), Identified During Experimental Autoimmune Uveitis,” Ocular Immunology and Inflammation 17 (2009): 47-55, https://doi.org/10.1080/09273940802491884.

[52]

J. Hori, M. Wang, M. Miyashita, et al., “B7-H1-Induced Apoptosis as a Mechanism of Immune Privilege of Corneal Allografts,” Journal of Immunology 177 (2006): 5928-5935.

[53]

Y. Usui, Y. Okunuki, T. Hattori, et al., “Functional Expression of B7H1 on Retinal Pigment Epithelial Cells,” Experimental Eye Research 86 (2008): 52-59.

[54]

S. Sugita, Y. Usui, S. Horie, et al., “T-Cell Suppression by Programmed Cell Death 1 Ligand 1 on Retinal Pigment Epithelium During Inflammatory Conditions,” Investigative Ophthalmology & Visual Science 50 (2009): 2862-2870, https://doi.org/10.1167/iovs.08-2846.

[55]

J. Neefjes, M. L. M. Jongsma, P. Paul, and O. Bakke, “Towards a Systems Understanding of MHC Class I and MHC Class II Antigen Presentation,” Nature Reviews. Immunology 11 (2011): 823-836, https://doi.org/10.1038/nri3084.

[56]

E. Yoshihara, C. O'Connor, E. Gasser, et al., “Immune-Evasive Human Islet-Like Organoids Ameliorate Diabetes,” Nature 586 (2020): 606-611, https://doi.org/10.1038/s41586-020-2631-z.

[57]

J. Hsu, J. J. Hodgins, M. Marathe, et al., “Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade,” Journal of Clinical Investigation 128 (2018): 4654-4668, https://doi.org/10.1172/JCI99317.

[58]

T.-T. Wei, M.-Y. Zhang, X.-H. Zheng, et al., “Interferon-γ Induces Retinal Pigment Epithelial Cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 Signaling Pathway in Age-Related Macular Degeneration,” Federation of European Biochemical Societies Journal 289 (2022): 1968-1983, https://doi.org/10.1111/febs.16272.

[59]

L. Zhang, N. Borjini, Y. Lun, et al., “CDCP1 Regulates Retinal Pigmented Epithelial Barrier Integrity for the Development of Experimental Autoimmune Uveitis,” Journal of Clinical Investigation Insight 7 (2022): e157038, https://doi.org/10.1172/jci.insight.157038.

[60]

R. K. Kutty, W. Samuel, K. Boyce, et al., “Proinflammatory Cytokines Decrease the Expression of Genes Critical for RPE Function,” Molecular Vision 22 (2016): 1156-1168.

[61]

L. Wu, Y. Jin, X. Zhao, et al., “Tumor Aerobic Glycolysis Confers Immune Evasion Through Modulating Sensitivity to T Cell-Mediated Bystander Killing via TNF-α,” Cell Metabolism 35 (2023): 1580-1596.e9, https://doi.org/10.1016/j.cmet.2023.07.001.

[62]

G. Rathnasamy, W. S. Foulds, E.-A. Ling, and C. Kaur, “Retinal Microglia—A Key Player in Healthy and Diseased Retina,” Progress in Neurobiology 173 (2019): 18-40, https://doi.org/10.1016/j.pneurobio.2018.05.006.

[63]

L. Zhang, Z. Li, K. M. Skrzypczynska, et al., “Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer,” Cell 181, no. 2 (2020): 442-459.e29, https://doi.org/10.1016/j.cell.2020.03.048.

[64]

Z.-Q. Liu, H. Dai, L. Yao, et al., “A Single-Cell Transcriptional Landscape of Immune Cells Shows Disease-Specific Changes of T Cell and Macrophage Populations in Human Achalasia,” Nature Communications 14 (2023): 4685, https://doi.org/10.1038/s41467-023-39750-5.

[65]

L.-H. Chen, J.-F. Liu, Y. Lu, X.-Y. He, C. Zhang, and H.-H. Zhou, “Complement C1q (C1qA, C1qB, and C1qC) may be a Potential Prognostic Factor and an Index of Tumor Microenvironment Remodeling in Osteosarcoma,” Frontiers in Oncology 11 (2021): 642144, https://doi.org/10.3389/fonc.2021.642144.

[66]

K. I. Abou-Daya, R. Tieu, D. Zhao, et al., “Resident Memory T Cells Form During Persistent Antigen Exposure Leading to Allograft Rejection,” Science Immunology 6, no. 57 (2021): eabc8122, https://doi.org/10.1126/sciimmunol.abc8122.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/