Human Midbrain Organoids Enriched With Dopaminergic Neurons for Long-Term Functional Evaluation

Xinyue Wang , Gaoying Sun , Mingming Tang , Da Li , Jianhuan Qi , Chuanyue Wang , Yukai Wang , Baoyang Hu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70005

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70005 DOI: 10.1111/cpr.70005
ORIGINAL ARTICLE

Human Midbrain Organoids Enriched With Dopaminergic Neurons for Long-Term Functional Evaluation

Author information +
History +
PDF

Abstract

Human midbrain organoids with functional dopaminergic (DA) neurons are invaluable for the therapeutic development of Parkinson's disease (PD). However, current methods face significant limitations, including challenges in generating pint-sized organoids enriched with DA neurons and the lack of robust functional assays for efficiently evaluating neural networks over extended periods. Here we present an innovative approach that combines developmental patterning with mechanical cutting to produce small midbrain organoids, with diameters less than 300 μm, suitable for long-term evaluation, along with a comprehensive functional assay system consisting of calcium transient assay, neurite extension assay, and multielectrode array (MEA) assay. Radial cutting of organoids into four to eight portions according to their sizes at the appropriate developmental stage significantly increases the yield of viable organoids while reducing necrotic cell regions. Using the functional assay system, we demonstrate that DA neurons within the organoids extend long projections, respond to dopamine stimulation, and form neural networks characterised by giant depolarising potential-like events. Our approach supports the generation of midbrain organoids and PD models that can be used for long-term functional testing.

Keywords

dopaminergic neurons / electrophysiology / human embryonic stem cells / midbrain organoids / neural network

Cite this article

Download citation ▾
Xinyue Wang, Gaoying Sun, Mingming Tang, Da Li, Jianhuan Qi, Chuanyue Wang, Yukai Wang, Baoyang Hu. Human Midbrain Organoids Enriched With Dopaminergic Neurons for Long-Term Functional Evaluation. Cell Proliferation, 2025, 58(7): e70005 DOI:10.1111/cpr.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. B. Bissonette and M. R. Roesch, “Development and Function of the Midbrain Dopamine System: What We Know and What We Need to,” Genes, Brain, and Behavior 15, no. 1 (2016): 62-73.

[2]

A. Bjorklund and S. B. Dunnett, “Dopamine Neuron Systems in the Brain: An Update,” Trends in Neurosciences 30, no. 5 (2007): 194-202.

[3]

D. Reumann, C. Krauditsch, M. Novatchkova, et al., “In Vitro Modeling of the Human Dopaminergic System Using Spatially Arranged Ventral Midbrain-Striatum-Cortex Assembloids,” Nature Methods 20, no. 12 (2023): 2034-2047.

[4]

Y. Li, Z. Li, C. Wang, et al., “Spatiotemporal Transcriptome Atlas Reveals the Regional Specification of the Developing Human Brain,” Cell 186, no. 26 (2023): 5892-5909.

[5]

O. Garritsen, E. Y. van Battum, L. M. Grossouw, and R. J. Pasterkamp, “Development, Wiring and Function of Dopamine Neuron Subtypes,” Nature Reviews. Neuroscience 24, no. 3 (2023): 134-152.

[6]

R. A. McCutcheon, A. Abi-Dargham, and O. D. Howes, “Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms,” Trends in Neurosciences 42, no. 3 (2019): 205-220.

[7]

P. Maiti, J. Manna, and G. L. Dunbar, “Current Understanding of the Molecular Mechanisms in Parkinson's Disease: Targets for Potential Treatments,” Translational Neurodegeneration 6 (2017): 28.

[8]

Y. Ben-Shlomo, S. Darweesh, J. Llibre-Guerra, C. Marras, M. San Luciano, and C. Tanner, “The Epidemiology of Parkinson's Disease,” Lancet 403, no. 10423 (2024): 283-292.

[9]

R. A. Samarasinghe, O. A. Miranda, J. E. Buth, et al., “Identification of Neural Oscillations and Epileptiform Changes in Human Brain Organoids,” Nature Neuroscience 24, no. 10 (2021): 1488-1500.

[10]

G. La Manno, D. Gyllborg, S. Codeluppi, et al., “Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells,” Cell 167, no. 2 (2016): 566-580 e19.

[11]

H. W. S. Babu, S. M. Kumar, H. Kaur, M. Iyer, and B. Vellingiri, “Midbrain Organoids for Parkinson's Disease (PD)—A Powerful Tool to Understand the Disease Pathogenesis,” Life Sciences 345 (2024): 122610.

[12]

M. Li, Y. Yuan, Z. Hou, S. Hao, L. Jin, and B. Wang, “Human Brain Organoid: Trends, Evolution, and Remaining Challenges,” Neural Regeneration Research 19, no. 11 (2024): 2387-2399.

[13]

M. A. Lancaster, M. Renner, C.-A. Martin, et al., “Cerebral Organoids Model Human Brain Development and Microcephaly,” Nature 501, no. 7467 (2013): 373-379.

[14]

A. Atamian, M. Birtele, N. Hosseini, et al., “Human Cerebellar Organoids With Functional Purkinje Cells,” Cell Stem Cell 31, no. 1 (2024): 39-51.

[15]

M. S. Choe, S. J. Kim, S. T. Oh, et al., “A Simple Method to Improve the Quality and Yield of Human Pluripotent Stem Cell-Derived Cerebral Organoids,” Heliyon 7, no. 6 (2021): e07350.

[16]

I. Pavlinov, M. Tambe, J. Abbott, et al., “In Depth Characterization of Midbrain Organoids Derived From Wild Type iPSC Lines,” PLoS One 18, no. 10 (2023): e0292926.

[17]

J. Jo, Y. Xiao, A. X. Sun, et al., “Midbrain-Like Organoids From Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons,” Cell Stem Cell 19, no. 2 (2016): 248-257.

[18]

H. Renner, M. Grabos, K. J. Becker, et al., “A Fully Automated High-Throughput Workflow for 3D-Based Chemical Screening in Human Midbrain Organoids,” eLife 9 (2020): 9.

[19]

G. Morrone Parfitt, E. Coccia, C. Goldman, et al., “Disruption of Lysosomal Proteolysis in Astrocytes Facilitates Midbrain Organoid Proteostasis Failure in an Early-Onset Parkinson's Disease Model,” Nature Communications 15, no. 1 (2024): 447.

[20]

Z. He, L. Dony, J. S. Fleck, et al., “An Integrated Transcriptomic Cell Atlas of Human Neural Organoids,” Nature 635, no. 8039 (2024): 690-698.

[21]

S. P. Pasca, “Constructing Human Neural Circuits in Living Systems by Transplantation,” Cell 187, no. 1 (2024): 8-13.

[22]

M. A. Lancaster, “Brain Organoids get Vascularized,” Nature Biotechnology 36, no. 5 (2018): 407-408.

[23]

W. Xue, H. Li, J. Xu, et al., “Effective Cryopreservation of Human Brain Tissue and Neural Organoids,” Cell Reports Methods 4, no. 5 (2024): 100777.

[24]

M. Watanabe, J. E. Buth, N. Vishlaghi, et al., “Self-Organized Cerebral Organoids With Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection,” Cell Reports 21, no. 2 (2017): 517-532.

[25]

A. Zagare, K. Barmpa, S. Smajic, et al., “Midbrain Organoids Mimic Early Embryonic Neurodevelopment and Recapitulate LRRK2-p.Gly2019Ser-Associated Gene Expression,” American Journal of Human Genetics 109, no. 2 (2022): 311-327.

[26]

A. Fiorenzano, E. Sozzi, M. Birtele, et al., “Single-Cell Transcriptomics Captures Features of Human Midbrain Development and Dopamine Neuron Diversity in Brain Organoids,” Nature Communications 12, no. 1 (2021): 7302.

[27]

L. Yang, T. W. Kim, Y. Han, et al., “SARS-CoV-2 Infection Causes Dopaminergic Neuron Senescence,” Cell Stem Cell 31, no. 2 (2024): 196-211.

[28]

B. Lee, H. N. Choi, Y. H. Che, et al., “SARS-CoV-2 Infection Exacerbates the Cellular Pathology of Parkinson's Disease in Human Dopaminergic Neurons and a Mouse Model,” Cell Reports Medicine 5, no. 5 (2024): 101570.

[29]

J. Walter, S. Bolognin, S. K. Poovathingal, et al., “The Parkinson's-Disease-Associated Mutation LRRK2-G2019S Alters Dopaminergic Differentiation Dynamics via NR2F1,” Cell Reports 37, no. 3 (2021): 109864.

[30]

L. Geng, W. Gao, H. Saiyin, et al., “MLKL Deficiency Alleviates Neuroinflammation and Motor Deficits in the Alpha-Synuclein Transgenic Mouse Model of Parkinson's Disease,” Molecular Neurodegeneration 18, no. 1 (2023): 94.

[31]

K. Barmpa, C. Saraiva, D. Lopez-Pigozzi, et al., “Modeling Early Phenotypes of Parkinson's Disease by Age-Induced Midbrain-Striatum Assembloids,” Communications Biology 7, no. 1 (2024): 1561.

[32]

S. L. Giandomenico and M. A. Lancaster, “Probing Human Brain Evolution and Development in Organoids,” Current Opinion in Cell Biology 44 (2017): 36-43.

[33]

X. Dong, S.-B. Xu, X. Chen, et al., “Human Cerebral Organoids Establish Subcortical Projections in the Mouse Brain After Transplantation,” Molecular Psychiatry 26, no. 7 (2020): 2964-2976, https://doi.org/10.1038/s41380-020-00910-4.

[34]

G. Sun, M. Tang, X. Wang, et al., “Generation of Human Otic Neuronal Organoids Using Pluripotent Stem Cells,” Cell Proliferation 56, no. 5 (2023): e13434.

[35]

A. Terauchi, P. Yee, E. M. Johnson-Venkatesh, et al., “The Projection-Specific Signals That Establish Functionally Segregated Dopaminergic Synapses,” Cell 186 (2023): 3845-3861.

[36]

S. Lv, E. He, J. Luo, et al., “Using Human-Induced Pluripotent Stem Cell Derived Neurons on Microelectrode Arrays to Model Neurological Disease: A Review,” Advanced Science (Weinheim) 10 (2023): e2301828.

[37]

J. Q. Zhou, L. H. Zeng, C. T. Li, et al., “Brain Organoids Are New Tool for Drug Screening of Neurological Diseases,” Neural Regeneration Research 18, no. 9 (2023): 1884-1889.

[38]

M. Birtele, M. Lancaster, and G. Quadrato, “Modelling Human Brain Development and Disease With Organoids,” Nature Reviews. Molecular Cell Biology (2024), https://doi.org/10.1038/s41580-024-00804-1.

[39]

W. Zhu, M. Tao, Y. Hong, et al., “Dysfunction of Vesicular Storage in Young-Onset Parkinson's Patient-Derived Dopaminergic Neurons and Organoids Revealed by Single Cell Electrochemical Cytometry,” Chemical Science 13, no. 21 (2022): 6217-6223.

[40]

S. Wu, Y. Hong, C. Chu, et al., “Construction of Human 3D Striato-Nigral Assembloids to Recapitulate Medium Spiny Neuronal Projection Defects in Huntington's Disease,” Proceedings of the National Academy of Sciences of the United States of America 121, no. 22 (2024): e2316176121.

[41]

Y. Chen, Y. Gu, B. Wang, et al., “Synaptotagmin-11 Deficiency Mediates Schizophrenia-Like Behaviors in Mice via Dopamine Over-Transmission,” Nature Communications 15, no. 1 (2024): 10571.

[42]

I. Tsutsui-Kimura, H. Takiue, K. Yoshida, et al., “Dysfunction of Ventrolateral Striatal Dopamine Receptor Type 2-Expressing Medium Spiny Neurons Impairs Instrumental Motivation,” Nature Communications 8 (2017): 14304.

[43]

M. Y. Malik, F. Guo, A. Asif-Malik, et al., “Impaired Striatal Glutathione-Ascorbate Metabolism Induces Transient Dopamine Increase and Motor Dysfunction,” Nature Metabolism 6, no. 11 (2024): 2100-2117.

[44]

H. Hornberg, K. Pysanenko, G. Rizzi, et al., “Rescue of Oxytocin Response and Social Behaviour in a Mouse Model of Autism,” Nature 584, no. 7820 (2020): 252-256.

[45]

I. D. Waldman, D. C. Rowe, A. Abramowitz, et al., “Association and Linkage of the Dopamine Transporter Gene and Attention-Deficit Hyperactivity Disorder in Children: Heterogeneity Owing to Diagnostic Subtype and Severity,” American Journal of Human Genetics 63, no. 6 (1998): 1767-1776.

[46]

S. Sabate-Soler, S. L. Nickels, C. Saraiva, et al., “Microglia Integration Into Human Midbrain Organoids Leads to Increased Neuronal Maturation and Functionality,” Glia 70, no. 7 (2022): 1267-1288.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/