Mitochondrial Mutation Leads to Cardiomyocyte Hypertrophy by Disruption of Mitochondria-Associated ER Membrane

Miao Yu , Min Song , Manna Zhang , Shuangshuang Chen , Baoqiang Ni , Xuechun Li , Wei Lei , Zhenya Shen , Yong Fan , Jianyi Zhang , Shijun Hu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70002

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70002 DOI: 10.1111/cpr.70002
ORIGINAL ARTICLE

Mitochondrial Mutation Leads to Cardiomyocyte Hypertrophy by Disruption of Mitochondria-Associated ER Membrane

Author information +
History +
PDF

Abstract

m.3243A>G is the most common pathogenic mtDNA mutation. High energy-demanding organs, such as heart, are usually involved in mitochondria diseases. However, whether and how m.3243A>G affects cardiomyocytes remain unknown. We have established patient-specific iPSCs carrying m.3243A>G and induced cardiac differentiation. Cardiomyocytes with high m.3243A>G burden exhibited hypertrophic phenotype. This point mutation is localised in MT-TL1 encoding tRNALeu (UUR). m.3243A>G altered tRNALeu (UUR) conformation and decreased its stability. mtDNA is essential for mitochondrial function. Mitochondria dysfunction occurred and tended to become round. Its interaction with ER, mitochondria-associated ER membrane (MAM), was disrupted with decreased contact number and length. MAM is a central hub for calcium trafficking. Disrupted MAM disturbed calcium homeostasis, which may be the direct and leading cause of cardiomyocyte hypertrophy, as MAM enforcement reversed this pathological state. Considering the threshold effect of mitochondrial disease, mito-TALENs were introduced to eliminate mutant mitochondria and release mutation load. Mutation reduction partially reversed the cellular behaviour and made it approach to that of control one. These findings reveal the pathogenesis underlying m.3243A>G from perspective of organelle interaction, rather than organelle. Beyond mitochondria quality control, its proper interaction with other organelles, such as ER, matters for mitochondria disease. This study may provide inspiration for mitochondria disease intervention.

Keywords

cardiomyocyte hypertrophy / induced pluripotent stem cell / mitochondria-associated ER membrane / mitochondrial mutation

Cite this article

Download citation ▾
Miao Yu, Min Song, Manna Zhang, Shuangshuang Chen, Baoqiang Ni, Xuechun Li, Wei Lei, Zhenya Shen, Yong Fan, Jianyi Zhang, Shijun Hu. Mitochondrial Mutation Leads to Cardiomyocyte Hypertrophy by Disruption of Mitochondria-Associated ER Membrane. Cell Proliferation, 2025, 58(7): e70002 DOI:10.1111/cpr.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O. M. Russell, G. S. Gorman, R. N. Lightowlers, and D. M. Turnbull, “Mitochondrial Diseases: Hope for the Future,” Cell 181, no. 1 (2020): 168-188, https://doi.org/10.1016/j.cell.2020.02.051.

[2]

A. Suomalainen and B. J. Battersby, “Mitochondrial Diseases: The Contribution of Organelle Stress Responses to Pathology,” Nature Reviews Molecular Cell Biology 19, no. 2 (2018): 77-92, https://doi.org/10.1038/nrm.2017.66.

[3]

G. S. Gorman, A. M. Schaefer, Y. Ng, et al., “Prevalence of Nuclear and Mitochondrial DNA Mutations Related to Adult Mitochondrial Disease,” Annals of Neurology 77, no. 5 (2015): 753-759, https://doi.org/10.1002/ana.24362.

[4]

S. Anderson, A. T. Bankier, B. G. Barrell, et al., “Sequence and Organization of the Human Mitochondrial Genome,” Nature 290, no. 5806 (1981): 457-465, https://doi.org/10.1038/290457a0.

[5]

R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull, and N. Howell, “Reanalysis and Revision of the Cambridge Reference Sequence for Human Mitochondrial DNA,” Nature Genetics 23, no. 2 (1999): 147, https://doi.org/10.1038/13779.

[6]

J. P. Grady, S. J. Pickett, Y. S. Ng, et al., “mtDNA Heteroplasmy Level and Copy Number Indicate Disease Burden in m.3243A>G Mitochondrial Disease,” EMBO Molecular Medicine 10, no. 6 (2018): e8262, https://doi.org/10.15252/emmm.201708262.

[7]

A. Di Toro, M. Urtis, N. Narula, et al., “Impediments to Heart Transplantation in Adults With MELAS (MT-TL1:m.3243A>G) Cardiomyopathy,” Journal of the American College of Cardiology 80, no. 15 (2022): 1431-1443, https://doi.org/10.1016/j.jacc.2022.04.067.

[8]

M. Yang, L. Xu, C. Xu, et al., “The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients,” Frontiers in Endocrinology 12 (2021): 728043, https://doi.org/10.3389/fendo.2021.728043.

[9]

A. J. Marian and E. Braunwald, “Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy,” Circulation Research 121, no. 7 (2017): 749-770, https://doi.org/10.1161/circresaha.117.311059.

[10]

A. J. Marian, “Molecular Genetic Basis of Hypertrophic Cardiomyopathy,” Circulation Research 128, no. 10 (2021): 1533-1553, https://doi.org/10.1161/circresaha.121.318346.

[11]

J. B. Stewart, “Current Progress With Mammalian Models of Mitochondrial DNA Disease,” Journal of Inherited Metabolic Disease 44, no. 2 (2021): 325-342, https://doi.org/10.1002/jimd.12324.

[12]

H. Tani, K. Ishikawa, H. Tamashiro, et al., “Aberrant RNA Processing Contributes to the Pathogenesis of Mitochondrial Diseases in Trans-Mitochondrial Mouse Model Carrying Mitochondrial tRNALeu(UUR) With a Pathogenic A2748G Mutation,” Nucleic Acids Research 50, no. 16 (2022): 9382-9396, https://doi.org/10.1093/nar/gkac699.

[13]

A. Kasahara, K. Ishikawa, M. Yamaoka, et al., “Generation of Trans-Mitochondrial Mice Carrying Homoplasmic mtDNAs With a Missense Mutation in a Structural Gene Using ES Cells,” Human Molecular Genetics 15, no. 6 (2006): 871-881, https://doi.org/10.1093/hmg/ddl005.

[14]

O. Hashizume, A. Shimizu, M. Yokota, et al., “Specific Mitochondrial DNA Mutation in Mice Regulates Diabetes and Lymphoma Development,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 26 (2012): 10528-10533, https://doi.org/10.1073/pnas.1202367109.

[15]

M. Yokota, H. Shitara, O. Hashizume, et al., “Generation of Trans-Mitochondrial Mito-Mice by the Introduction of a Pathogenic G13997A mtDNA From Highly Metastatic Lung Carcinoma Cells,” FEBS Letters 584, no. 18 (2010): 3943-3948, https://doi.org/10.1016/j.febslet.2010.07.048.

[16]

B. Y. Mok, M. H. de Moraes, J. Zeng, et al., “A Bacterial Cytidine Deaminase Toxin Enables CRISPR-Free Mitochondrial Base Editing,” Nature 583, no. 7817 (2020): 631-637, https://doi.org/10.1038/s41586-020-2477-4.

[17]

H. S. Lee, H. Ma, R. C. Juanes, et al., “Rapid Mitochondrial DNA Segregation in Primate Preimplantation Embryos Precedes Somatic and Germline Bottleneck,” Cell Reports 1, no. 5 (2012): 506-515, https://doi.org/10.1016/j.celrep.2012.03.011.

[18]

M. Yokota, H. Hatakeyama, S. Okabe, Y. Ono, and Y. Goto, “Mitochondrial Respiratory Dysfunction Caused by a Heteroplasmic Mitochondrial DNA Mutation Blocks Cellular Reprogramming,” Human Molecular Genetics 24, no. 16 (2015): 4698-4709, https://doi.org/10.1093/hmg/ddv201.

[19]

A. R. Vandiver, A. Torres, A. Sanden, et al., “Increased Mitochondrial Mutation Heteroplasmy Induces Aging Phenotypes in Pluripotent Stem Cells and Their Differentiated Progeny,” Aging Cell (2024): e14402, https://doi.org/10.1111/acel.14402.

[20]

R. Gupta, M. Kanai, T. J. Durham, et al., “Nuclear Genetic Control of mtDNA Copy Number and Heteroplasmy in Humans,” Nature 620, no. 7975 (2023): 839-848, https://doi.org/10.1038/s41586-023-06426-5.

[21]

G. Csordás, D. Weaver, and G. Hajnóczky, “Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions,” Trends in Cell Biology 28, no. 7 (2018): 523-540, https://doi.org/10.1016/j.tcb.2018.02.009.

[22]

C. J. Obara, J. Nixon-Abell, A. S. Moore, et al., “Motion of VAPB Molecules Reveals ER-Mitochondria Contact Site Subdomains,” Nature 626, no. 7997 (2024): 169-176, https://doi.org/10.1038/s41586-023-06956-y.

[23]

V. Hung, S. S. Lam, N. D. Udeshi, et al., “Proteomic Mapping of Cytosol-Facing Outer Mitochondrial and ER Membranes in Living Human Cells by Proximity Biotinylation,” eLife 6 (2017): e24463, https://doi.org/10.7554/eLife.24463.

[24]

T. Hayashi and T. P. Su, “Sigma-1 Receptor Chaperones at the ER-Mitochondrion Interface Regulate Ca(2+) Signaling and Cell Survival,” Cell 131, no. 3 (2007): 596-610, https://doi.org/10.1016/j.cell.2007.08.036.

[25]

C. Giorgi, K. Ito, H. K. Lin, et al., “PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release,” Science (New York, N.Y.) 330, no. 6008 (2010): 1247-1251, https://doi.org/10.1126/science.1189157.

[26]

M. Kannan, S. Lahiri, L. K. Liu, V. Choudhary, and W. A. Prinz, “Phosphatidylserine Synthesis at Membrane Contact Sites Promotes Its Transport Out of the ER,” Journal of Lipid Research 58, no. 3 (2017): 553-562, https://doi.org/10.1194/jlr.M072959.

[27]

T. Verfaillie, N. Rubio, A. D. Garg, et al., “PERK Is Required at the ER-Mitochondrial Contact Sites to Convey Apoptosis After ROS-Based ER Stress,” Cell Death and Differentiation 19, no. 11 (2012): 1880-1891, https://doi.org/10.1038/cdd.2012.74.

[28]

T. Anelli, L. Bergamelli, E. Margittai, et al., “Ero1α Regulates Ca(2+) Fluxes at the Endoplasmic Reticulum-Mitochondria Interface (MAM),” Antioxidants & Redox Signaling 16, no. 10 (2012): 1077-1087, https://doi.org/10.1089/ars.2011.4004.

[29]

J. Janikiewicz, J. Szymański, D. Malinska, et al., “Mitochondria-Associated Membranes in Aging and Senescence: Structure, Function, and Dynamics,” Cell Death & Disease 9, no. 3 (2018): 332, https://doi.org/10.1038/s41419-017-0105-5.

[30]

D. V. Ziegler, N. Martin, and D. Bernard, “Cellular Senescence Links Mitochondria-ER Contacts and Aging,” Communications Biology 4, no. 1 (2021): 1323, https://doi.org/10.1038/s42003-021-02840-5.

[31]

S. Marchi, S. Patergnani, S. Missiroli, et al., “Mitochondrial and Endoplasmic Reticulum Calcium Homeostasis and Cell Death,” Cell Calcium 69 (2018): 62-72, https://doi.org/10.1016/j.ceca.2017.05.003.

[32]

M. Krols, G. van Isterdael, B. Asselbergh, et al., “Mitochondria-Associated Membranes as Hubs for Neurodegeneration,” Acta Neuropathologica 131, no. 4 (2016): 505-523, https://doi.org/10.1007/s00401-015-1528-7.

[33]

S. Paillusson, R. Stoica, P. Gomez-Suaga, et al., “There's Something Wrong With My MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases,” Trends in Neurosciences 39, no. 3 (2016): 146-157, https://doi.org/10.1016/j.tins.2016.01.008.

[34]

E. Tubbs, P. Theurey, G. Vial, et al., “Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Is Required for Insulin Signaling and Is Implicated in Hepatic Insulin Resistance,” Diabetes 63, no. 10 (2014): 3279-3294, https://doi.org/10.2337/db13-1751.

[35]

D. Sebastián, M. I. Hernández-Alvarez, J. Segalés, et al., “Mitofusin 2 (Mfn2) Links Mitochondrial and Endoplasmic Reticulum Function With Insulin Signaling and Is Essential for Normal Glucose Homeostasis,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 14 (2012): 5523-5528, https://doi.org/10.1073/pnas.1108220109.

[36]

S. Wu, Q. Lu, Y. Ding, et al., “Hyperglycemia-Driven Inhibition of AMP-Activated Protein Kinase α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes In Vivo,” Circulation 139, no. 16 (2019): 1913-1936, https://doi.org/10.1161/circulationaha.118.033552.

[37]

Y. E. Li, J. R. Sowers, C. Hetz, and J. Ren, “Cell Death Regulation by MAMs: From Molecular Mechanisms to Therapeutic Implications in Cardiovascular Diseases,” Cell Death & Disease 13, no. 5 (2022): 504, https://doi.org/10.1038/s41419-022-04942-2.

[38]

M. Paillard, E. Tubbs, P. A. Thiebaut, et al., “Depressing Mitochondria-Reticulum Interactions Protects Cardiomyocytes From Lethal Hypoxia-Reoxygenation Injury,” Circulation 128, no. 14 (2013): 1555-1565, https://doi.org/10.1161/circulationaha.113.001225.

[39]

S. Wu, Q. Lu, Q. Wang, et al., “Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts In Vivo,” Circulation 136, no. 23 (2017): 2248-2266, https://doi.org/10.1161/circulationaha.117.030235.

[40]

L. K. Seidlmayer, J. Kuhn, A. Berbner, et al., “Inositol 1,4,5-Trisphosphate-Mediated Sarcoplasmic Reticulum-Mitochondrial Crosstalk Influences Adenosine Triphosphate Production via Mitochondrial Ca2+ Uptake Through the Mitochondrial Ryanodine Receptor in Cardiac Myocytes,” Cardiovascular Research 112, no. 1 (2016): 491-501, https://doi.org/10.1093/cvr/cvw185.

[41]

L. Liu, S. Yang, Y. Liu, et al., “DeepContact: High-Throughput Quantification of Membrane Contact Sites Based on Electron Microscopy Imaging,” Journal of Cell Biology 221, no. 9 (2022): e202106190, https://doi.org/10.1083/jcb.202106190.

[42]

L. Ye, Y. Yu, Z. A. Zhao, et al., “Patient-Specific iPSC-Derived Cardiomyocytes Reveal Abnormal Regulation of FGF16 in a Familial Atrial Septal Defect,” Cardiovascular Research 118, no. 3 (2022): 859-871, https://doi.org/10.1093/cvr/cvab154.

[43]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12926, https://doi.org/10.1111/cpr.12926.

[44]

Y. Zhang, J. Wei, J. Cao, et al., “Requirements for Human-Induced Pluripotent Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13182, https://doi.org/10.1111/cpr.13182.

[45]

X. Han, L. Qu, M. Yu, et al., “Thiamine-Modified Metabolic Reprogramming of Human Pluripotent Stem Cell-Derived Cardiomyocyte Under Space Microgravity,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 86, https://doi.org/10.1038/s41392-024-01791-7.

[46]

M. Yu, W. Lei, J. Cao, et al., “Requirements for Human Cardiomyocytes,” Cell Proliferation 55, no. 4 (2022): e13150, https://doi.org/10.1111/cpr.13150.

[47]

C. Wang, X. Dai, S. Wu, et al., “FUNDC1-Dependent Mitochondria-Associated Endoplasmic Reticulum Membranes Are Involved in Angiogenesis and Neoangiogenesis,” Nature Communications 12, no. 1 (2021): 2616, https://doi.org/10.1038/s41467-021-22771-3.

[48]

J. B. Stewart and P. F. Chinnery, “The Dynamics of Mitochondrial DNA Heteroplasmy: Implications for Human Health and Disease,” Nature Reviews Genetics 16, no. 9 (2015): 530-542, https://doi.org/10.1038/nrg3966.

[49]

Y. Yang, H. Wu, X. Kang, et al., “Targeted Elimination of Mutant Mitochondrial DNA in MELAS-iPSCs by mitoTALENs,” Protein & Cell 9, no. 3 (2018): 283-297, https://doi.org/10.1007/s13238-017-0499-y.

[50]

J. T. M. Tan, K. J. Price, S. R. Fanshaw, et al., “Exercise Reduces Glucose Intolerance, Cardiac Inflammation and Adipose Tissue Dysfunction in Psammomys obesus Exposed to Short Photoperiod and High Energy Diet,” International Journal of Molecular Sciences 25, no. 14 (2024): 7756, https://doi.org/10.3390/ijms25147756.

[51]

J. T. M. Tan, C. V. Cheney, N. E. S. Bamhare, et al., “Female Psammomys obesus Are Protected From Circadian Disruption-Induced Glucose Intolerance, Cardiac Fibrosis and Adipocyte Dysfunction,” International Journal of Molecular Sciences 25, no. 13 (2024): 7265, https://doi.org/10.3390/ijms25137265.

[52]

R. Anderson, A. Lagnado, D. Maggiorani, et al., “Length-Independent Telomere Damage Drives Post-Mitotic Cardiomyocyte Senescence,” EMBO Journal 38, no. 5 (2019): e100492, https://doi.org/10.15252/embj.2018100492.

[53]

L. Zhang, L. E. Pitcher, M. J. Yousefzadeh, L. J. Niedernhofer, P. D. Robbins, and Y. Zhu, “Cellular Senescence: A Key Therapeutic Target in Aging and Diseases,” Journal of Clinical Investigation 132, no. 15 (2022): e158450, https://doi.org/10.1172/jci158450.

[54]

E. Low, G. Alimohammadiha, L. A. Smith, et al., “How Good Is the Evidence That Cellular Senescence Causes Skin Ageing?,” Ageing Research Reviews 71 (2021): 101456, https://doi.org/10.1016/j.arr.2021.101456.

[55]

Z. Jia, Y. Zhang, Q. Li, et al., “A Coronary Artery Disease-Associated tRNAThr Mutation Altered Mitochondrial Function, Apoptosis and Angiogenesis,” Nucleic Acids Research 47, no. 4 (2019): 2056-2074, https://doi.org/10.1093/nar/gky1241.

[56]

G. Csordás, C. Renken, P. Várnai, et al., “Structural and Functional Features and Significance of the Physical Linkage Between ER and Mitochondria,” Journal of Cell Biology 174, no. 7 (2006): 915-921, https://doi.org/10.1083/jcb.200604016.

[57]

A. Beaulant, M. Dia, B. Pillot, et al., “Endoplasmic Reticulum-Mitochondria Miscommunication Is an Early and Causal Trigger of Hepatic Insulin Resistance and Steatosis,” Journal of Hepatology 77, no. 3 (2022): 710-722, https://doi.org/10.1016/j.jhep.2022.03.017.

[58]

G. S. Gorman, P. F. Chinnery, S. DiMauro, et al., “Mitochondrial Diseases,” Nature Reviews Disease Primers 2 (2016): 16080, https://doi.org/10.1038/nrdp.2016.80.

[59]

M. G. Bates, J. H. Newman, D. G. Jakovljevic, et al., “Defining Cardiac Adaptations and Safety of Endurance Training in Patients With m.3243A>G-Related Mitochondrial Disease,” International Journal of Cardiology 168, no. 4 (2013): 3599-3608, https://doi.org/10.1016/j.ijcard.2013.05.062.

[60]

S. P. Silveiro, L. H. Canani, A. L. Maia, J. W. Butany, and J. L. Gross, “Myocardial Dysfunction in Maternally Inherited Diabetes and Deafness,” Diabetes Care 26, no. 4 (2003): 1323-1324, https://doi.org/10.2337/diacare.26.4.1323.

[61]

Y. Momiyama, Y. Suzuki, F. Ohsuzu, Y. Atsumi, K. Matsuoka, and M. Kimura, “Left Ventricular Hypertrophy and Diastolic Dysfunction in Mitochondrial Diabetes,” Diabetes Care 24, no. 3 (2001): 604-605, https://doi.org/10.2337/diacare.24.3.604.

[62]

H. T. L. Phan, H. Lee, and K. Kim, “Trends and Prospects in Mitochondrial Genome Editing,” Experimental & Molecular Medicine 55, no. 5 (2023): 871-878, https://doi.org/10.1038/s12276-023-00973-7.

[63]

Y. Yoshida and S. Yamanaka, “Induced Pluripotent Stem Cells 10 Years Later,” Circulation Research 120, no. 12 (2017): 1958-1968, https://doi.org/10.1161/circresaha.117.311080.

[64]

I. Tolle, V. Tiranti, and A. Prigione, “Modeling Mitochondrial DNA Diseases: From Base Editing to Pluripotent Stem-Cell-Derived Organoids,” EMBO Reports 24, no. 4 (2023): e55678, https://doi.org/10.15252/embr.202255678.

[65]

C. B. Jackson, D. M. Turnbull, M. Minczuk, and P. A. Gammage, “Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective,” Trends in Molecular Medicine 26, no. 7 (2020): 698-709, https://doi.org/10.1016/j.molmed.2020.02.006.

[66]

M. Yokota, H. Hatakeyama, Y. Ono, M. Kanazawa, and Y. I. Goto, “Mitochondrial Respiratory Dysfunction Disturbs Neuronal and Cardiac Lineage Commitment of Human iPSCs,” Cell Death & Disease 8, no. 1 (2017): e2551, https://doi.org/10.1038/cddis.2016.484.

[67]

W. Wei, D. J. Gaffney, and P. F. Chinnery, “Cell Reprogramming Shapes the Mitochondrial DNA Landscape,” Nature Communications 12, no. 1 (2021): 5241, https://doi.org/10.1038/s41467-021-25482-x.

[68]

F. Palombo, C. Peron, L. Caporali, et al., “The Relevance of Mitochondrial DNA Variants Fluctuation During Reprogramming and Neuronal Differentiation of Human iPSCs,” Stem Cell Reports 16, no. 8 (2021): 1953-1967, https://doi.org/10.1016/j.stemcr.2021.06.016.

[69]

C. Xu, L. Tong, J. Rao, et al., “Heteroplasmic and Homoplasmic m.616T>C in Mitochondria tRNAPhe Promote Isolated Chronic Kidney Disease and Hyperuricemia,” JCI Insight 7, no. 11 (2022): e157418, https://doi.org/10.1172/jci.insight.157418.

[70]

F. Meng, Z. Jia, J. Zheng, et al., “A Deafness-Associated Mitochondrial DNA Mutation Caused Pleiotropic Effects on DNA Replication and tRNA Metabolism,” Nucleic Acids Research 50, no. 16 (2022): 9453-9469, https://doi.org/10.1093/nar/gkac720.

[71]

H. Park, E. Davidson, and M. P. King, “The Pathogenic A3243G Mutation in Human Mitochondrial tRNALeu(UUR) Decreases the Efficiency of Aminoacylation,” Biochemistry 42, no. 4 (2003): 958-964, https://doi.org/10.1021/bi026882r.

[72]

R. Li and M. X. Guan, “Human Mitochondrial Leucyl-tRNA Synthetase Corrects Mitochondrial Dysfunctions due to the tRNALeu(UUR) A3243G Mutation, Associated With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Symptoms and Diabetes,” Molecular and Cellular Biology 30, no. 9 (2010): 2147-2154, https://doi.org/10.1128/mcb.01614-09.

[73]

O. Z. Karicheva, O. A. Kolesnikova, T. Schirtz, et al., “Correction of the Consequences of Mitochondrial 3243A>G Mutation in the MT-TL1 Gene Causing the MELAS Syndrome by tRNA Import Into Mitochondria,” Nucleic Acids Research 39, no. 18 (2011): 8173-8186, https://doi.org/10.1093/nar/gkr546.

[74]

F. Dubeau, N. De Stefano, B. G. Zifkin, D. L. Arnold, and E. A. Shoubridge, “Oxidative Phosphorylation Defect in the Brains of Carriers of the tRNAleu(UUR) A3243G Mutation in a MELAS Pedigree,” Annals of Neurology 47, no. 2 (2000): 179-185.

[75]

N. M. Q. Pek, Q. H. Phua, B. X. Ho, et al., “Mitochondrial 3243A>G Mutation Confers Pro-Atherogenic and Pro-Inflammatory Properties in MELAS iPS Derived Endothelial Cells,” Cell Death & Disease 10, no. 11 (2019): 802, https://doi.org/10.1038/s41419-019-2036-9.

[76]

V. Chichagova, D. Hallam, J. Collin, et al., “Human iPSC Disease Modelling Reveals Functional and Structural Defects in Retinal Pigment Epithelial Cells Harbouring the m.3243A>G Mitochondrial DNA Mutation,” Scientific Reports 7, no. 1 (2017): 12320, https://doi.org/10.1038/s41598-017-12396-2.

[77]

T. M. Klein Gunnewiek, E. J. H. Van Hugte, M. Frega, et al., “m.3243A>G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity,” Cell Reports 31, no. 3 (2020): 107538, https://doi.org/10.1016/j.celrep.2020.107538.

[78]

S. Ryytty, S. R. Modi, N. Naumenko, et al., “Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes,” Cells 11, no. 16 (2022): 2593, https://doi.org/10.3390/cells11162593.

[79]

H. S. Ilamathi, S. Benhammouda, A. Lounas, et al., “Contact Sites Between Endoplasmic Reticulum Sheets and Mitochondria Regulate Mitochondrial DNA Replication and Segregation,” iScience 26, no. 7 (2023): 107180, https://doi.org/10.1016/j.isci.2023.107180.

[80]

C. Y. Chung, K. Singh, V. N. Kotiadis, et al., “Constitutive Activation of the PI3K-Akt-mTORC1 Pathway Sustains the m.3243 A > G mtDNA Mutation,” Nature Communications 12, no. 1 (2021): 6409, https://doi.org/10.1038/s41467-021-26746-2.

[81]

D. A. Eisner, J. L. Caldwell, K. Kistamás, and A. W. Trafford, “Calcium and Excitation-Contraction Coupling in the Heart,” Circulation Research 121, no. 2 (2017): 181-195, https://doi.org/10.1161/circresaha.117.310230.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/