Tryptophan Metabolic Enzyme IL4I1 Inhibits Ferroptosis by Decreasing Ubiquitination of Nrf2 via I3P in Glioblastoma

Yang Xu , Yu Hong , Tengfeng Yan , Qian Sun , Fanen Yuan , Shanwen Liang , Liguo Ye , Rongxin Geng , Yangzhi Qi , Qingsong Ye , Qianxue Chen

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e13816

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e13816 DOI: 10.1111/cpr.13816
ORIGINAL ARTICLE

Tryptophan Metabolic Enzyme IL4I1 Inhibits Ferroptosis by Decreasing Ubiquitination of Nrf2 via I3P in Glioblastoma

Author information +
History +
PDF

Abstract

Glioblastoma multiforme (GBM) is the deadliest brain tumour with an extremely poor prognosis. Tryptophan catabolism could enhance an array of protumour-genic signals and promoted tumour progression in GBM. However, the mechanisms of oncogenic signalling under tryptophan catabolism and potential therapy targeting this pathway have not been completely understood. Interleukin 4-induced 1 (IL4I1) is newly defined as a tryptophan metabolic enzyme and the potential function in GBM cells still remains unclear. In our study, we found IL4I1 was upregulated in GBM patients and predicted poor prognosis. Upregulation of IL4I1 inhibited GBM ferroptosis in vitro and in vivo. Further, we found that indole-3-pyruvic acid (I3P) from tryptophan mediated by IL4I1 could scavenge free radical and had an impressive role in inhibiting ferroptosis. To clarify the potential mechanism of I3P in GBM ferroptosis, we performed transcriptomic analyses of GBM cells treated with I3P and found that Nrf2 related genes was upregulated. Further, we found that the ubiquitination of Nrf2 could be attenuate by I3P binding with Nrf2 directly. Knockdown of Nrf2 attenuated the induction of anti-ferroptosis by IL4I1, pointing to Nrf2 as a key mediator of this process. In vivo, overexpression of IL4I1 with ML385 in GBM xenografts promoted ferroptosis. Collectively, this study emphasises the crucial roles of IL4I1 in anti-ferroptosis through Nrf2 signalling pathway but not AHR pathway by catabolism tryptophan, suggesting IL4I1 and tryptophan reprogramming as potential therapeutic targets for GBM.

Keywords

ferroptosis / GBM / IL4I1 / indole-3-pyruvic acid (I3P) / Nrf2 / ubiquitination

Cite this article

Download citation ▾
Yang Xu, Yu Hong, Tengfeng Yan, Qian Sun, Fanen Yuan, Shanwen Liang, Liguo Ye, Rongxin Geng, Yangzhi Qi, Qingsong Ye, Qianxue Chen. Tryptophan Metabolic Enzyme IL4I1 Inhibits Ferroptosis by Decreasing Ubiquitination of Nrf2 via I3P in Glioblastoma. Cell Proliferation, 2025, 58(6): e13816 DOI:10.1111/cpr.13816

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. T. Ostrom, G. Cioffi, K. Waite, C. Kruchko, and J. S. Barnholtz-Sloan, “CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018,” Neuro-Oncology 23 (2021): iii1-iii105, https://doi.org/10.1093/neuonc/noab200.

[2]

S. Fulda, “Cell Death-Based Treatment of Glioblastoma,” Cell Death & Disease 9 (2018): 121, https://doi.org/10.1038/s41419-017-0021-8.

[3]

T. Liu, C. Zhu, X. Chen, et al., “Ferroptosis, as the Most Enriched Programmed Cell Death Process in Glioma, Induces Immunosuppression and Immunotherapy Resistance,” Neuro-Oncology 24 (2022): 1113-1125, https://doi.org/10.1093/neuonc/noac033.

[4]

D. Tang, X. Chen, R. Kang, and G. Kroemer, “Ferroptosis: Molecular Mechanisms and Health Implications,” Cell Research 31 (2021): 107-125, https://doi.org/10.1038/s41422-020-00441-1.

[5]

X. Chen, R. Kang, G. Kroemer, and D. Tang, “Broadening Horizons: The Role of Ferroptosis in Cancer,” Nature Reviews. Clinical Oncology 18 (2021): 280-296, https://doi.org/10.1038/s41571-020-00462-0.

[6]

P. A. Robe, D. H. Martin, M. T. Nguyen-Khac, et al., “Early Termination of ISRCTN45828668, a Phase 1/2 Prospective, Randomized Study of Sulfasalazine for the Treatment of Progressing Malignant Gliomas in Adults,” BMC Cancer 9 (2009): 372, https://doi.org/10.1186/1471-2407-9-372.

[7]

S. M. Robert, S. C. Buckingham, S. L. Campbell, et al., “SLC7A11 Expression Is Associated With Seizures and Predicts Poor Survival in Patients With Malignant Glioma,” Science Translational Medicine 7 (2015): 289ra86, https://doi.org/10.1126/scitranslmed.aaa8103.

[8]

A. Anandhan, M. Dodson, C. J. Schmidlin, P. Liu, and D. D. Zhang, “Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis,” Cell Chemical Biology 27 (2020): 436-447, https://doi.org/10.1016/j.chembiol.2020.03.011.

[9]

D. Hanahan, “Hallmarks of Cancer: New Dimensions,” Cancer Discovery 12 (2022): 31-46, https://doi.org/10.1158/2159-8290.CD-21-1059.

[10]

S. Sivanand and M. G. Vander Heiden, “Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer,” Cancer Cell 37 (2020): 147-156, https://doi.org/10.1016/j.ccell.2019.12.011.

[11]

R. Deshmukh, M. F. Allega, and S. Tardito, “A Map of the Altered Glioma Metabolism,” Trends in Molecular Medicine 27 (2021): 1045-1059, https://doi.org/10.1016/j.molmed.2021.07.011.

[12]

R. Qiu, Y. Zhong, Q. Li, Y. Li, and H. Fan, “Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors,” Frontiers in Cell and Development Biology 9 (2021): 693215, https://doi.org/10.3389/fcell.2021.693215.

[13]

Y.-Q. Liu, R.-C. Chai, Y.-Z. Wang, et al., “Amino Acid Metabolism-Related Gene Expression-Based Risk Signature Can Better Predict Overall Survival for Glioma,” Cancer Science 110 (2019): 321-333, https://doi.org/10.1111/cas.13878.

[14]

Y. Xu, L. Ye, R. Geng, et al., “Development and Verification of the Amino Metabolism-Related and Immune-Associated Prognosis Signature in Gliomas,” Frontiers in Oncology 11 (2021): 774332, https://doi.org/10.3389/fonc.2021.774332.

[15]

K. Palanichamy, K. Thirumoorthy, S. Kanji, et al., “Methionine and Kynurenine Activate Oncogenic Kinases in Glioblastoma, and Methionine Deprivation Compromises Proliferation,” Clinical Cancer Research 22 (2016): 3513-3523, https://doi.org/10.1158/1078-0432.CCR-15-2308.

[16]

V. Panitz, S. Končarević, A. Sadik, et al., “Tryptophan Metabolism Is Inversely Regulated in the Tumor and Blood of Patients With Glioblastoma,” Theranostics 11 (2021): 9217-9233, https://doi.org/10.7150/thno.60679.

[17]

A. Fiore, L. Zeitler, M. Russier, et al., “Kynurenine Importation by SLC7A11 Propagates Anti-Ferroptotic Signaling,” Molecular Cell 82 (2022): 920-932.e7, https://doi.org/10.1016/j.molcel.2022.02.007.

[18]

M. Platten, E. A. A. Nollen, U. F. Röhrig, F. Fallarino, and C. A. Opitz, “Tryptophan Metabolism as a Common Therapeutic Target in Cancer, Neurodegeneration and Beyond,” Nature Reviews. Drug Discovery 18 (2019): 379-401, https://doi.org/10.1038/s41573-019-0016-5.

[19]

V. Molinier-Frenkel, A. Prévost-Blondel, and F. Castellano, “The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment,” Cells 8 (2019): 757-766, https://doi.org/10.3390/cells8070757.

[20]

A. Sadik, L. F. Somarribas Patterson, S. Öztürk, et al., “IL4I1 Is a Metabolic Immune Checkpoint That Activates the AHR and Promotes Tumor Progression,” Cell 182 (2020): 1252-1270.e34, https://doi.org/10.1016/j.cell.2020.07.038.

[21]

L. Zeitler, A. Fiore, C. Meyer, et al., “Anti-Ferroptotic Mechanism of IL4i1-Mediated Amino Acid Metabolism,” eLife 10 (2021): e64806, https://doi.org/10.7554/eLife.64806.

[22]

R. L. Bowman, Q. Wang, A. Carro, R. G. W. Verhaak, and M. Squatrito, “GlioVis Data Portal for Visualization and Analysis of Brain Tumor Expression Datasets,” Neuro-Oncology 19 (2017): 139-141, https://doi.org/10.1093/neuonc/now247.

[23]

D. N. Louis, A. Perry, P. Wesseling, et al., “The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary,” Neuro-Oncology 23 (2021): 1231-1251, https://doi.org/10.1093/neuonc/noab106.

[24]

Y. Xu, Q. Sun, F. Yuan, et al., “RND2 Attenuates Apoptosis and Autophagy in Glioblastoma Cells by Targeting the p38 MAPK Signalling Pathway,” Journal of Experimental & Clinical Cancer Research 39 (2020): 174, https://doi.org/10.1186/s13046-020-01671-2.

[25]

S. Jing, Y. Liu, Z. Ye, A. A. Ghaleb Al-bashari, H. Zhou, and Y. He, “Ferrostatin-1 Loaded Gelatin Methacrylate Scaffold Promotes Recovery From Spinal Cord Injury via Inhibiting Apoptosis and Ferroptosis,” Nano TransMed 2 (2023): 100005, https://doi.org/10.1016/j.ntm.2023.100005.

[26]

F. Yuan, B. Liu, Y. Xu, et al., “TIPE3 Is a Regulator of Cell Apoptosis in Glioblastoma,” Cancer Letters 446 (2019): 1-14, https://doi.org/10.1016/j.canlet.2018.12.019.

[27]

L. Zhai, M. Dey, K. L. Lauing, et al., “The Kynurenine to Tryptophan Ratio as a Prognostic Tool for Glioblastoma Patients Enrolling in Immunotherapy,” Journal of Clinical Neuroscience 22 (2015): 1964-1968, https://doi.org/10.1016/j.jocn.2015.06.018.

[28]

K. Aldape, G. Zadeh, S. Mansouri, G. Reifenberger, and A. von Deimling, “Glioblastoma: Pathology, Molecular Mechanisms and Markers,” Acta Neuropathologica 129 (2015): 829-848, https://doi.org/10.1007/s00401-015-1432-1.

[29]

R. Castro-Portuguez and G. L. Sutphin, “Kynurenine Pathway, NAD + Synthesis, and Mitochondrial Function: Targeting Tryptophan Metabolism to Promote Longevity and Healthspan,” Experimental Gerontology 132 (2020): 110841, https://doi.org/10.1016/j.exger.2020.110841.

[30]

B. R. Stockwell, J. P. F. Angeli, H. Bayir, et al., “Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease,” Cell 171 (2017): 273-285, https://doi.org/10.1016/j.cell.2017.09.021.

[31]

S. Jang, X. R. Chapa-Dubocq, Y. Y. Tyurina, et al., “Elucidating the Contribution of Mitochondrial Glutathione to Ferroptosis in Cardiomyocytes,” Redox Biology 45 (2021): 102021, https://doi.org/10.1016/j.redox.2021.102021.

[32]

P. Koppula, L. Zhuang, and B. Gan, “Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy,” Protein & Cell 12 (2021): 599-620, https://doi.org/10.1007/s13238-020-00789-5.

[33]

V. Politi, S. D'Alessio, G. Di Stazio, and G. De Luca, “Antioxidant Properties of Indole-3-Pyruvic Acid,” Advances in Experimental Medicine and Biology 398 (1996): 291-298, https://doi.org/10.1007/978-1-4613-0381-7_46.

[34]

G. Lei, L. Zhuang, and B. Gan, “Targeting Ferroptosis as a Vulnerability in Cancer,” Nature Reviews. Cancer 22 (2022): 381-396, https://doi.org/10.1038/s41568-022-00459-0.

[35]

Z. Liu, Q. Zhao, Z.-X. Zuo, et al., “Systematic Analysis of the Aberrances and Functional Implications of Ferroptosis in Cancer,” iScience 23 (2020): 101302, https://doi.org/10.1016/j.isci.2020.101302.

[36]

Q. M. Chen, “Nrf2 for Cardiac Protection: Pharmacological Options Against Oxidative Stress,” Trends in Pharmacological Sciences 42 (2021): 729-744, https://doi.org/10.1016/j.tips.2021.06.005.

[37]

X. Yu and Y. C. Long, “Crosstalk Between Cystine and Glutathione Is Critical for the Regulation of Amino Acid Signaling Pathways and Ferroptosis,” Scientific Reports 6 (2016): 30033, https://doi.org/10.1038/srep30033.

[38]

D. Leclerc, A. C. Staats Pires, G. J. Guillemin, and D. Gilot, “Detrimental Activation of AhR Pathway in Cancer: An Overview of Therapeutic Strategies,” Current Opinion in Immunology 70 (2021): 15-26, https://doi.org/10.1016/j.coi.2020.12.003.

[39]

S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, et al., “Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death,” Cell 149 (2012): 1060-1072, https://doi.org/10.1016/j.cell.2012.03.042.

[40]

H.-C. Yoo and J.-M. Han, “Amino Acid Metabolism in Cancer Drug Resistance,” Cells 11 (2022): 140, https://doi.org/10.3390/cells11010140.

[41]

J. Yang, X. Dai, H. Xu, Q. Tang, and F. Bi, “Regulation of Ferroptosis by Amino Acid Metabolism in Cancer,” International Journal of Biological Sciences 18 (2022): 1695-1705, https://doi.org/10.7150/ijbs.64982.

[42]

B. D. Paul, J. I. Sbodio, and S. H. Snyder, “Cysteine Metabolism in Neuronal Redox Homeostasis,” Trends in Pharmacological Sciences 39 (2018): 513-524, https://doi.org/10.1016/j.tips.2018.02.007.

[43]

K. Wang, Z. Zhang, H.-I. Tsai, et al., “Branched-Chain Amino Acid Aminotransferase 2 Regulates Ferroptotic Cell Death in Cancer Cells,” Cell Death and Differentiation 28 (2021): 1222-1236, https://doi.org/10.1038/s41418-020-00644-4.

[44]

J. Liu, X. Xia, and P. Huang, “xCT: A Critical Molecule That Links Cancer Metabolism to Redox Signaling,” Molecular Therapy 28 (2020): 2358-2366, https://doi.org/10.1016/j.ymthe.2020.08.021.

[45]

K. Bersuker, J. M. Hendricks, Z. Li, et al., “The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis,” Nature 575 (2019): 688-692, https://doi.org/10.1038/s41586-019-1705-2.

[46]

A. Osama, J. Zhang, J. Yao, X. Yao, and J. Fang, “Nrf2: A Dark Horse in Alzheimer's Disease Treatment,” Ageing Research Reviews 64 (2020): 101206, https://doi.org/10.1016/j.arr.2020.101206.

[47]

Y. Fang, C. Xing, X. Wang, et al., “Activation of the ROS/HO-1/NQO1 Signaling Pathway Contributes to the Copper-Induced Oxidative Stress and Autophagy in Duck Renal Tubular Epithelial Cells,” Science of the Total Environment 757 (2021): 143753, https://doi.org/10.1016/j.scitotenv.2020.143753.

[48]

N. Kubben, W. Zhang, L. Wang, et al., “Repression of the Antioxidant NRF2 Pathway in Premature Aging,” Cell 165 (2016): 1361-1374, https://doi.org/10.1016/j.cell.2016.05.017.

[49]

M. Rojo de la Vega, E. Chapman, and D. D. Zhang, “NRF2 and the Hallmarks of Cancer,” Cancer Cell 34 (2018): 21-43, https://doi.org/10.1016/j.ccell.2018.03.022.

[50]

K. Itoh, N. Wakabayashi, Y. Katoh, et al., “Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 Through Binding to the Amino-Terminal Neh2 Domain,” Genes & Development 13 (1999): 76-86, https://doi.org/10.1101/gad.13.1.76.

[51]

L. Du, Z. Xing, B. Tao, et al., “Both IDO1 and TDO Contribute to the Malignancy of Gliomas via the Kyn-AhR-AQP4 Signaling Pathway,” Signal Transduction and Targeted Therapy 5 (2020): 10, https://doi.org/10.1038/s41392-019-0103-4.

[52]

F. Sahm, I. Oezen, C. A. Opitz, et al., “The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress,” Cancer Research 73 (2013): 3225-3234, https://doi.org/10.1158/0008-5472.CAN-12-3831.

[53]

M. C. Takenaka, G. Gabriely, V. Rothhammer, et al., “Control of Tumor-Associated Macrophages and T Cells in Glioblastoma via AHR and CD39,” Nature Neuroscience 22 (2019): 729-740, https://doi.org/10.1038/s41593-019-0370-y.

[54]

M. D. Sharma, B. Baban, P. Chandler, et al., “Plasmacytoid Dendritic Cells From Mouse Tumor-Draining Lymph Nodes Directly Activate Mature Tregs via Indoleamine 2,3-Dioxygenase,” Journal of Clinical Investigation 117 (2007): 2570-2582, https://doi.org/10.1172/JCI31911.

[55]

K. Hezaveh, R. S. Shinde, A. Klötgen, et al., “Tryptophan-Derived Microbial Metabolites Activate the Aryl Hydrocarbon Receptor in Tumor-Associated Macrophages to Suppress Anti-Tumor Immunity,” Immunity 55 (2022): 324-340.e8, https://doi.org/10.1016/j.immuni.2022.01.006.

[56]

M. Obara-Michlewska, “The Tryptophan Metabolism, Kynurenine Pathway and Oxidative Stress - Implications for Glioma Pathobiology,” Neurochemistry International 158 (2022): 105363, https://doi.org/10.1016/j.neuint.2022.105363.

[57]

J. Reyes Ocampo, R. Lugo Huitrón, D. González-Esquivel, et al., “Kynurenines With Neuroactive and Redox Properties: Relevance to Aging and Brain Diseases,” Oxidative Medicine and Cellular Longevity 2014 (2014): 646909, https://doi.org/10.1155/2014/646909.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/