Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders

Mengyao Li , Yi Lin , Qiang Cheng , Tuo Wei

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13808

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13808 DOI: 10.1111/cpr.13808
REVIEW

Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders

Author information +
History +
PDF

Abstract

Genetic diseases have long posed significant challenges, with limited breakthroughs in treatment. Recent advances in gene editing technologies offer new possibilities in gene therapy for the treatment of inherited disorders. However, traditional gene editing methods have limitations that hinder their potential for clinical use, such as limited editing capabilities and the production of unintended byproducts. To overcome these limitations, prime editing (PE) has been developed as a powerful tool for precise and efficient genome modification. In this review, we provide an overview of the latest advancements in PE and its potential applications in the treatment of inherited disorders. Furthermore, we examine the current delivery vehicles employed for delivering PE systems in vitro and in vivo, and analyze their respective benefits and limitations. Ultimately, we discuss the challenges that need to be addressed to fully unlock the potential of PE for the remission or cure of genetic diseases.

Keywords

delivery vehicles / genetic disorders / genome manipulation / precise therapy / prime editing

Cite this article

Download citation ▾
Mengyao Li, Yi Lin, Qiang Cheng, Tuo Wei. Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders. Cell Proliferation, 2025, 58(4): e13808 DOI:10.1111/cpr.13808

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Oyelade, I. Isewon, O. Ogunlana, et al., “Overview of the Human Genome,” in Genome Plasticity in Health and Disease, Chapter 2 (London: Academic Press, 2020), 9-26.

[2]

B. R. Korf, R. E. Pyeritz, and W. W. Grody, “Nature and Frequency of Genetic Disease,” in Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics, Seventh ed., eds. R. E. Pyeritz, B. R. Korf, and W. W. Grody (Amsterdam, The Netherlands: Academic Press, 2019), 47-51.

[3]

T. M. Frayling, N. J. Timpson, M. N. Weedon, et al., “A Common Variant in the FTO Gene Is Associated With Body Mass Index and Predisposes to Childhood and Adult Obesity,” Science 316 (2007): 889-894.

[4]

A. B. C. Lee, M.-H. Tan, and C. L. L. Chai, “Small-Molecule Enhancers of CRISPR-Induced Homology-Directed Repair in Gene Therapy: A Medicinal Chemist's Perspective,” Drug Discovery Today 27 (2022): 2510-2525.

[5]

H. H. Chen, K. Sawamoto, R. W. Mason, et al., “Enzyme Replacement Therapy for Mucopolysaccharidoses; Past, Present, and Future,” Journal of Human Genetics 64 (2019): 1153-1171.

[6]

V. Rani and A. Prabhu, “CRISPR-Cas9 Based Non-Viral Approaches in Nanoparticle Elicited Therapeutic Delivery,” Journal of Drug Delivery Science and Technology 76 (2022): 103737.

[7]

E. H. Choi, S. Suh, A. T. Foik, et al., “In Vivo Base Editing Rescues Cone Photoreceptors in a Mouse Model of Early-Onset Inherited Retinal Degeneration,” Nature Communications 13 (2022): 1830.

[8]

D. R. Karri, Y. Zhang, F. Chemello, et al., “Long-Term Maintenance of Dystrophin Expression and Resistance to Injury of Skeletal Muscle in Gene Edited DMD Mice,” Molecular Therapy - Nucleic Acids 28 (2022): 154-167.

[9]

A. Rovai, B. Chung, Q. Hu, et al., “In Vivo Adenine Base Editing Reverts C282Y and Improves Iron Metabolism in Hemochromatosis Mice,” Nature Communications 13 (2022): 5215.

[10]

F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, and P. D. Gregory, “Genome Editing With Engineered Zinc Finger Nucleases,” Nature Reviews Genetics 11 (2010): 636-646.

[11]

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science 337 (2012): 816-821.

[12]

L. Dang, G. Li, X. Wang, et al., “Comparison of Gene Disruption Induced by Cytosine Base Editing-Mediated iSTOP With CRISPR/Cas9-Mediated Frameshift,” Cell Proliferation 53 (2020): e12820.

[13]

Q. Zhou, H. Zhan, X. Liao, et al., “A Revolutionary Tool: CRISPR Technology Plays an Important Role in Construction of Intelligentized Gene Circuits,” Cell Proliferation 52 (2019): e12552.

[14]

D. B. T. Cox, R. J. Platt, and F. Zhang, “Therapeutic Genome Editing: Prospects and Challenges,” Nature Medicine 21 (2015): 121-131.

[15]

J. S. Filippo, P. Sung, and H. Klein, “Mechanism of Eukaryotic Homologous Recombination,” Annual Review of Biochemistry 77 (2008): 229-257.

[16]

M. R. Lieber, “The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway,” Annual Review of Biochemistry 79 (2010): 181-211.

[17]

J. M. Geisinger and T. Stearns, “CRISPR/Cas9 Treatment Causes Extended TP53-Dependent Cell Cycle Arrest in Human Cells,” Nucleic Acids Research 48 (2020): 9067-9081.

[18]

J. Li and X. Xu, “DNA Double-Strand Break Repair: A Tale of Pathway Choices,” Acta Biochimica et Biophysica Sinica Shanghai 48 (2016): 641-646.

[19]

V. Pattanayak, S. Lin, J. P. Guilinger, E. Ma, J. A. Doudna, and D. R. Liu, “High-Throughput Profiling of Off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity,” Nature Biotechnology 31 (2013): 839-843.

[20]

N. M. Gaudelli, A. C. Komor, H. A. Rees, et al., “Programmable Base Editing of A•T to G•C in Genomic DNA Without DNA Cleavage,” Nature 551 (2017): 464-471.

[21]

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, “Programmable Editing of a Target Base in Genomic DNA Without Double-Stranded DNA Cleavage,” Nature 533 (2016): 420-424.

[22]

H. A. Rees and D. R. Liu, “Base Editing: Precision Chemistry on the Genome and Transcriptome of Living Cells,” Nature Reviews Genetics 19 (2018): 770-788.

[23]

A. V. Anzalone, P. B. Randolph, J. R. Davis, et al., “Search-and-Replace Genome Editing Without Double-Strand Breaks or Donor DNA,” Nature 576 (2019): 149-157.

[24]

A. Raguram, S. Banskota, and D. R. Liu, “Therapeutic In Vivo Delivery of Gene Editing Agents,” Cell 185 (2022): 2806-2827.

[25]

P. J. Chen and D. R. Liu, “Prime Editing for Precise and Highly Versatile Genome Manipulation,” Nature Reviews. Genetics 24 (2022): 161-177.

[26]

Q. Lin, S. Jin, Y. Zong, et al., “High-Efficiency Prime Editing With Optimized, Paired pegRNAs in Plants,” Nature Biotechnology 39 (2021): 923-927.

[27]

K. Petri, W. Zhang, J. Ma, et al., “CRISPR Prime Editing With Ribonucleoprotein Complexes in Zebrafish and Primary Human Cells,” Nature Biotechnology 40 (2022): 189-193.

[28]

D. Sürün, A. Schneider, J. Mircetic, et al., “Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors,” Genes 11 (2020): 511.

[29]

D. Böck, T. Rothgangl, L. Villiger, et al., “In Vivo Prime Editing of a Metabolic Liver Disease in Mice,” Science Translational Medicine 14 (2022): eabl9238.

[30]

P. Liu, S.-Q. Liang, C. Zheng, et al., “Improved Prime Editors Enable Pathogenic Allele Correction and Cancer Modelling in Adult Mice,” Nature Communications 12 (2021): 2121.

[31]

Y. Kim, S. A. Hong, J. Yu, et al., “Adenine Base Editing and Prime Editing of Chemically Derived Hepatic Progenitors Rescue Genetic Liver Disease,” Cell Stem Cell 28 (2021): 1614-1624.

[32]

H. Zhang, R. Sun, J. Fei, H. Chen, and D. Lu, “Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing,” International Journal of Molecular Sciences 23 (2022): 5948.

[33]

H. Jang, D. H. Jo, C. S. Cho, et al., “Application of Prime Editing to the Correction of Mutations and Phenotypes in Adult Mice With Liver and Eye Diseases,” Nature Biomedical Engineering 6 (2022): 181-194.

[34]

S.-A. Hong, S.-E. Kim, A. Y. Lee, et al., “Therapeutic Base Editing and Prime Editing of COL7A1 Mutations in Recessive Dystrophic Epidermolysis Bullosa,” Molecular Therapy 30 (2022): 2664-2679.

[35]

R. Tao, Y. Wang, Y. Hu, et al., “WT-PE: Prime Editing With Nuclease Wild-Type Cas9 Enables Versatile Large-Scale Genome Editing,” Signal Transduction and Targeted Therapy 7 (2022): 108.

[36]

I. F. Schene, I. P. Joore, R. Oka, et al., “Prime Editing for Functional Repair in Patient-Derived Disease Models,” Nature Communications 11 (2020): 5352.

[37]

M. H. Geurts, E. D. Poel, C. Pleguezuelos-Manzano, et al., “Evaluating CRISPR-Based Prime Editing for Cancer Modeling and CFTR Repair in Organoids,” Life Science Alliance 4 (2021): e202000940.

[38]

M. Zhou, S. Tang, N. Duan, et al., “Targeted-Deletion of a Tiny Sequence via Prime Editing to Restore SMN Expression,” International Journal of Molecular Sciences 23 (2022): 7941.

[39]

A. V. Anzalone, X. D. Gao, C. J. Podracky, et al., “Programmable Deletion, Replacement, Integration and Inversion of Large DNA Sequences With Twin Prime Editing,” Nature Biotechnology 40 (2022): 731-740.

[40]

P. J. Chen, J. A. Hussmann, J. Yan, et al., “Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes,” Cell 184 (2021): 5635-5652.e5629.

[41]

J. L. Doman, A. A. Sousa, P. B. Randolph, P. J. Chen, and D. R. Liu, “Designing and Executing Prime Editing Experiments in Mammalian Cells,” Nature Protocols 17 (2022): 2431-2468.

[42]

R. Parsons, G.-M. Li, M. J. Longley, et al., “Hypermutability and Mismatch Repair Deficiency in RER+ Tumor Cells,” Cell 75 (1993): 1227-1236.

[43]

J. L. Doman, S. Pandey, M. E. Neugebauer, et al., “Phage-Assisted Evolution and Protein Engineering Yield Compact, Efficient Prime Editors,” Cell 186 (2023): 3983-4002.e3926.

[44]

J. Yan, P. Oyler-Castrillo, P. Ravisankar, et al., “Improving Prime Editing With an Endogenous Small RNA-Binding Protein,” Nature 628 (2024): 639-647.

[45]

L. W. Koblan, J. L. Doman, C. Wilson, et al., “Improving Cytidine and Adenine Base Editors by Expression Optimization and Ancestral Reconstruction,” Nature Biotechnology 36 (2018): 843-846.

[46]

M. P. Zafra, E. M. Schatoff, A. Katti, et al., “Optimized Base Editors Enable Efficient Editing in Cells, Organoids and Mice,” Nature Biotechnology 36 (2018): 888-893.

[47]

M. Velimirovic, L. C. Zanetti, M. W. Shen, et al., “Peptide Fusion Improves Prime Editing Efficiency,” Nature Communications 13 (2022): 3512.

[48]

M. Song, J. M. Lim, S. Min, et al., “Generation of a More Efficient Prime Editor 2 by Addition of the Rad51 DNA-Binding Domain,” Nature Communications 12 (2021): 5617.

[49]

K. Skourti-Stathaki and N. J. Proudfoot, “A Double-Edged Sword: R Loops as Threats to Genome Integrity and Powerful Regulators of Gene Expression,” Genes & Development 28 (2014): 1384-1396.

[50]

Y. Zong, Y. Liu, C. Xue, et al., “An Engineered Prime Editor With Enhanced Editing Efficiency in Plants,” Nature Biotechnology 40 (2022): 1394-1402.

[51]

G. P. Pijlman, A. Funk, N. Kondratieva, et al., “A Highly Structured, Nuclease-Resistant, Noncoding RNA Produced by Flaviviruses Is Required for Pathogenicity,” Cell Host & Microbe 4 (2008): 579-591.

[52]

G. Zhang, Y. Liu, S. Huang, et al., “Enhancement of Prime Editing via xrRNA Motif-Joined pegRNA,” Nature Communications 13 (2022): 1856.

[53]

J. W. Nelson, P. B. Randolph, S. P. Shen, et al., “Engineered pegRNAs Improve Prime Editing Efficiency,” Nature Biotechnology 40 (2022): 402-410.

[54]

Y. Feng, S. Liu, Q. Mo, P. Liu, X. Xiao, and H. Ma, “Enhancing Prime Editing Efficiency and Flexibility With Tethered and Split pegRNAs,” Protein & Cell 14 (2022): 304-308.

[55]

X. Li, X. Wang, W. Sun, et al., “Enhancing Prime Editing Efficiency by Modified pegRNA With RNA G-Quadruplexes,” Journal of Molecular Cell Biology 14 (2022): mjac022.

[56]

Y. Liu, G. Yang, S. Huang, et al., “Enhancing Prime Editing by Csy4-mediated Processing of PegRNA,” Cell Research 31 (2021): 1134-1136.

[57]

X. Li, L. Zhou, B.-Q. Gao, et al., “Highly Efficient Prime Editing by Introducing Same-Sense Mutations in pegRNA or Stabilizing Its Structure,” Nature Communications 13 (2022): 1669.

[58]

C. Happi Mbakam, J. Rousseau, Y. Lu, et al., “Prime Editing Optimized RTT Permits the Correction of the c.8713C>T Mutation in DMD Gene,” Molecular Therapy - Nucleic Acids 30 (2022): 272-285.

[59]

K. Ponnienselvan, P. Liu, T. Nyalile, et al., “Reducing the Inherent Auto-Inhibitory Interaction Within the pegRNA Enhances Prime Editing Efficiency,” Nucleic Acids Research 51 (2023): 6966-6980.

[60]

W. Zhang, K. Petri, J. Ma, et al., “Enhancing CRISPR Prime Editing by Reducing Misfolded pegRNA Interactions,” eLife 12 (2024): RP90948.

[61]

M. Li, A. Zhong, Y. Wu, et al., “Transient Inhibition of p53 Enhances Prime Editing and Cytosine Base-Editing Efficiencies in Human Pluripotent Stem Cells,” Nature Communications 13 (2022): 6354.

[62]

N. Liu, L. Zhou, G. Lin, et al., “HDAC Inhibitors Improve CRISPR-Cas9 Mediated Prime Editing and Base Editing,” Molecular Therapy - Nucleic Acids 29 (2022): 36-46.

[63]

J. Ferreira da Silva, G. P. Oliveira, E. A. Arasa-Verge, et al., “Prime Editing Efficiency and Fidelity Are Enhanced in the Absence of Mismatch Repair,” Nature Communications 13 (2022): 760.

[64]

Y. Qi, Y. Zhang, S. Tian, et al., “An Optimized Prime Editing System for Efficient Modification of the Pig Genome,” Science China Life Sciences 66 (2023): 2851-2861.

[65]

S.-J. Park, T. Y. Jeong, S. K. Shin, et al., “Targeted Mutagenesis in Mouse Cells and Embryos Using an Enhanced Prime Editor,” Genome Biology 22 (2021): 170.

[66]

J. E. Dahlman, O. O. Abudayyeh, J. Joung, J. S. Gootenberg, F. Zhang, and S. Konermann, “Orthogonal Gene Knockout and Activation With a Catalytically Active Cas9 Nuclease,” Nature Biotechnology 33 (2015): 1159-1161.

[67]

X. Ding, T. Seebeck, Y. Feng, Y. Jiang, G. D. Davis, and F. Chen, “Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion With Chromatin-Modulating Peptides,” CRISPR Journal 2 (2019): 51-63.

[68]

P. Liu, K. Ponnienselvan, T. Nyalile, et al., “Increasing Intracellular dNTP Levels Improves Prime Editing Efficiency,” Nature Biotechnology (2024): 1-6.

[69]

X. Lei, A. Huang, D. Chen, et al., “Rapid Generation of Long, Chemically Modified pegRNAs for Prime Editing,” Nature Biotechnology (2024): 1-12.

[70]

B. P. Kleinstiver, M. S. Prew, S. Q. Tsai, et al., “Engineered CRISPR-Cas9 Nucleases With Altered PAM Specificities,” Nature 523 (2015): 481-485.

[71]

H. Nishimasu, X. Shi, S. Ishiguro, et al., “Engineered CRISPR-Cas9 Nuclease With Expanded Targeting Space,” Science 361 (2018): 1259-1262.

[72]

R. T. Walton, K. A. Christie, M. N. Whittaker, and B. P. Kleinstiver, “Unconstrained Genome Targeting With Near-PAMless Engineered CRISPR-Cas9 Variants,” Science 368 (2020): 290-296.

[73]

J. Kweon, J.-K. Yoon, A.-H. Jang, et al., “Engineered Prime Editors With PAM Flexibility,” Molecular Therapy 29 (2021): 2001-2007.

[74]

Z. Karoulia, E. Gavathiotis, and P. I. Poulikakos, “New Perspectives for Targeting RAF Kinase in Human Cancer,” Nature Reviews Cancer 17 (2017): 676-691.

[75]

Y. Oh, W.-J. Lee, J. K. Hur, et al., “Expansion of the Prime Editing Modality With Cas9 From Francisella novicida,” Genome Biology 23 (2022): 92.

[76]

D. Kim, J. Kim, J. K. Hur, K. W. Been, S. H. Yoon, and J. S. Kim, “Genome-Wide Analysis Reveals Specificities of Cpf1 Endonucleases in Human Cells,” Nature Biotechnology 34 (2016): 863-868.

[77]

R. Liang, Z. He, K. T. Zhao, et al., “Prime Editing Using CRISPR-Cas12a and Circular RNAs in Human Cells,” Nature Biotechnology 42 (2024): 1-9.

[78]

B. P. Kleinstiver, V. Pattanayak, M. S. Prew, et al., “High-Fidelity CRISPR-Cas9 Nucleases With No Detectable Genome-Wide Off-Target Effects,” Nature 529 (2016): 490-495.

[79]

R. Tao, Y. Wang, Y. Jiao, et al., “Bi-PE: Bi-Directional Priming Improves CRISPR/Cas9 Prime Editing in Mammalian Cells,” Nucleic Acids Research 50 (2022): 6423-6434.

[80]

J. Wang, Z. He, G. Wang, et al., “Efficient Targeted Insertion of Large DNA Fragments Without DNA Donors,” Nature Methods 19 (2022): 331-340.

[81]

J. Choi, W. Chen, C. C. Suiter, et al., “Precise Genomic Deletions Using Paired Prime Editing,” Nature Biotechnology 40 (2022): 218-226.

[82]

T. Jiang, X.-O. Zhang, Z. Weng, and W. Xue, “Deletion and Replacement of Long Genomic Sequences Using Prime Editing,” Nature Biotechnology 40 (2022): 227-234.

[83]

M. T. N. Yarnall, E. I. Ioannidi, C. Schmitt-Ulms, et al., “Drag-and-Drop Genome Insertion of Large Sequences Without Double-Strand DNA Cleavage Using CRISPR-Directed Integrases,” Nature Biotechnology 41 (2023): 500-512.

[84]

C. Zheng, B. Liu, X. Dong, N. Gaston, E. J. Sontheimer, and W. Xue, “Template-Jumping Prime Editing Enables Large Insertion and Exon Rewriting In Vivo,” Nature Communications 14 (2023): 3369.

[85]

S. Pandey, X. D. Gao, N. A. Krasnow, et al., “Efficient Site-Specific Integration of Large Genes in Mammalian Cells via Continuously Evolved Recombinases and Prime Editing,” Nature Biomedical Engineering (2024): 1-18.

[86]

J. Kweon, H.-Y. Hwang, H. Ryu, A.-H. Jang, D. Kim, and Y. Kim, “Targeted Genomic Translocations and Inversions Generated Using a Paired Prime Editing Strategy,” Molecular Therapy 31 (2023): 249-259.

[87]

Q. Yuan and X. Gao, “Multiplex Base- and Prime-Editing With Drive-and-Process CRISPR Arrays,” Nature Communications 13 (2022): 2771.

[88]

Y. Jiao, L. Zhou, R. Tao, et al., “Random-PE: An Efficient Integration of Random Sequences Into Mammalian Genome by Prime Editing,” Molecular Biomedicine 2 (2021): 1-9.

[89]

F. Tasca, Q. Wang, and M. A. F. V. Gonçalves, “Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny,” Cells 9 (2020): 953.

[90]

X. Chen and M. A. F. V. Gonçalves, “Engineered Viruses as Genome Editing Devices,” Molecular Therapy 24 (2016): 447-457.

[91]

J. van Haasteren, J. Li, O. J. Scheideler, N. Murthy, and D. V. Schaffer, “The Delivery Challenge: Fulfilling the Promise of Therapeutic Genome Editing,” Nature Biotechnology 38 (2020): 845-855.

[92]

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene Transfer Into Mouse Lyoma Cells by Electroporation in High Electric Fields,” EMBO Journal 1 (1982): 841-845.

[93]

E. Neumann and K. Rosenheck, “Permeability Changes Induced by Electric Impulses in Vesicular Membranes,” Journal of Membrane Biology 10 (1972): 279-290.

[94]

A. Bardhan, L. Bruckner-Tuderman, I. L. C. Chapple, et al., “Epidermolysis Bullosa,” Nature Reviews Disease Primers 6 (2020): 78.

[95]

C. Has, J. W. Bauer, C. Bodemer, et al., “Consensus Reclassification of Inherited Epidermolysis Bullosa and Other Disorders With Skin Fragility,” British Journal of Dermatology 183 (2020): 614-627.

[96]

Q. Wang, J. Liu, J. M. Janssen, F. Tasca, H. Mei, and M. A. F. V. Gonçalves, “Broadening the Reach and Investigating the Potential of Prime Editors Through Fully Viral Gene-Deleted Adenoviral Vector Delivery,” Nucleic Acids Research 49 (2021): 11986-12001.

[97]

A. A. Sousa, C. Hemez, L. Lei, et al., “Systematic Optimization of Prime Editing for the Efficient Functional Correction of CFTR F508del in Human Airway Epithelial Cells,” Nature Biomedical Engineering (2024): 1-15.

[98]

H. Li, O. Busquets, Y. Verma, et al., “Highly Efficient Generation of Isogenic Pluripotent Stem Cell Models Using Prime Editing,” eLife 11 (2022): e79208.

[99]

H. Rahimi, M. Salehiabar, J. Charmi, et al., “Harnessing Nanoparticles for the Efficient Delivery of the CRISPR/Cas9 System,” Nano Today 34 (2020): 100895.

[100]

T. Suda and D. Liu, “Hydrodynamic Gene Delivery: Its Principles and Applications,” Molecular Therapy 15 (2007): 2063-2069.

[101]

G. Zhang, V. Budker, and J. A. Wolff, “High Levels of Foreign Gene Expression in Hepatocytes After Tail Vein Injections of Naked Plasmid DNA,” Human Gene Therapy 10 (1999): 1735-1737.

[102]

F. Liu, Y. K. Song, and D. Liu, “Hydrodynamics-Based Transfection in Animals by Systemic Administration of Plasmid DNA,” Gene Therapy 6 (1999): 1258-1266.

[103]

G. Zhang, X. Gao, Y. K. Song, et al., “Hydroporation as the Mechanism of Hydrodynamic Delivery,” Gene Therapy 11 (2004): 675-682.

[104]

G. J. Sawyer, X. Dong, M. Whitehorne, et al., “Cardiovascular Function Following Acute Volume Overload for Hydrodynamic Gene Delivery to the Liver,” Gene Therapy 14 (2007): 1208-1217.

[105]

V. G. Budker, V. M. Subbotin, T. Budker, M. G. Sebestyén, G. Zhang, and J. A. Wolff, “Mechanism of Plasmid Delivery by Hydrodynamic Tail Vein Injection. II. Morphological Studies,” Journal of Gene Medicine 8 (2006): 874-888.

[106]

N. Kobayashi, J. D. Rivas-Carrillo, A. Soto-Gutierrez, et al., “Gene Delivery to Embryonic Stem Cells,” Birth Defects Research Part C: Embryo Today: Reviews 75 (2005): 10-18.

[107]

C. H. Miao, A. R. Thompson, K. Loeb, and X. Ye, “Long-Term and Therapeutic-Level Hepatic Gene Expression of Human Factor IX After Naked Plasmid Transfer In Vivo,” Molecular Therapy 3 (2001): 947-957.

[108]

Z. Xu, Q. Wang, H. Zhong, et al., “Carrier Strategies Boost the Application of CRISPR/Cas System in Gene Therapy,” Exploration (Beijing) 2 (2022): 20210081.

[109]

T. Dull, R. Zufferey, M. Kelly, et al., “A Third-Generation Lentivirus Vector With a Conditional Packaging System,” Journal of Virology 72 (1998): 8463-8471.

[110]

P. Gallay, T. Hope, D. Chin, and D. Trono, “HIV-1 Infection of Nondividing Cells Through the Recognition of Integrase by the Importin/Karyopherin Pathway,” Proceedings of the National Academy of Sciences 94 (1997): 9825-9830.

[111]

M. Kumar, B. Keller, N. Makalou, and R. E. Sutton, “Systematic Determination of the Packaging Limit of Lentiviral Vectors,” Human Gene Therapy 12 (2001): 1893-1905.

[112]

K. Toon, E. M. Bentley, and G. Mattiuzzo, “More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation,” Viruses 13 (2021): 217.

[113]

A. Duverge and M. Negroni, “Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus,” Viruses 12 (2020): 1311.

[114]

H. Kymäläinen, J. U. Appelt, F. A. Giordano, et al., “Long-Term Episomal Transgene Expression From Mitotically Stable Integration-Deficient Lentiviral Vectors,” Human Gene Therapy 25 (2014): 428-442.

[115]

W. C. Russell, “Adenoviruses: Update on Structure and Function,” Journal of General Virology 90 (2009): 1-20.

[116]

A. Ricobaraza, M. Gonzalez-Aparicio, L. Mora-Jimenez, S. Lumbreras, and R. Hernandez-Alcoceba, “High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy,” International Journal of Molecular Sciences 21 (2020): 3643.

[117]

M. Holkers, I. Maggio, S. F. D. Henriques, J. M. Janssen, T. Cathomen, and M. A. F. V. Gonçalves, “Adenoviral Vector DNA for Accurate Genome Editing With Engineered Nucleases,” Nature Methods 11 (2014): 1051-1057.

[118]

E. E. Perez, J. Wang, J. C. Miller, et al., “Establishment of HIV-1 Resistance in CD4+ T Cells by Genome Editing Using Zinc-Finger Nucleases,” Nature Biotechnology 26 (2008): 808-816.

[119]

I. Maggio, L. Stefanucci, J. M. Janssen, et al., “Selection-Free Gene Repair After Adenoviral Vector Transduction of Designer Nucleases: Rescue of Dystrophin Synthesis in DMD Muscle Cell Populations,” Nucleic Acids Research 44 (2016): 1449-1470.

[120]

M. Holkers, I. Maggio, J. Liu, et al., “Differential Integrity of TALE Nuclease Genes Following Adenoviral and Lentiviral Vector Gene Transfer Into Human Cells,” Nucleic Acids Research 41 (2012): e63.

[121]

R. Tao, L. Xiao, L. Zhou, et al., “Long-Term Metabolic Correction of Phenylketonuria by AAV-Delivered Phenylalanine Amino Lyase,” Molecular Therapy - Methods & Clinical Development 19 (2020): 507-517.

[122]

K. M. Quinn, A. Da Costa, A. Yamamoto, et al., “Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells Following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization,” Journal of Immunology 190 (2013): 2720-2735.

[123]

S. L. Ginn, I. E. Alexander, M. L. Edelstein, M. R. Abedi, and J. Wixon, “Gene Therapy Clinical Trials Worldwide to 2012—An Update,” Journal of Gene Medicine 15 (2013): 65-77.

[124]

L. M. Drouin and M. Agbandje-McKenna, “Adeno-Associated Virus Structural Biology as a Tool in Vector Development,” Future Virology 8 (2013): 1183-1199.

[125]

M. F. Naso, B. Tomkowicz, W. L. Perry, and W. R. Strohl, “Adeno-Associated Virus (AAV) as a Vector for Gene Therapy,” BioDrugs 31 (2017): 317-334.

[126]

P. Tornabene and I. Trapani, “Can Adeno-Associated Viral Vectors Deliver Effectively Large Genes?,” Human Gene Therapy 31 (2020): 47-56.

[127]

S.-M. Ryu, T. Koo, K. Kim, et al., “Adenine Base Editing in Mouse Embryos and an Adult Mouse Model of Duchenne Muscular Dystrophy,” Nature Biotechnology 36 (2018): 536-539.

[128]

T. Rothgangl, M. K. Dennis, P. J. C. Lin, et al., “In Vivo Adenine Base Editing of PCSK9 in Macaques Reduces LDL Cholesterol Levels,” Nature Biotechnology 39 (2021): 949-957.

[129]

L. W. Koblan, M. R. Erdos, C. Wilson, et al., “In Vivo Base Editing Rescues Hutchinson-Gilford Progeria Syndrome in Mice,” Nature 589 (2021): 608-614.

[130]

J. R. Davis, S. Banskota, J. M. Levy, et al., “Efficient Prime Editing in Mouse Brain, Liver and Heart With Dual AAVs,” Nature Biotechnology 42 (2024): 253-264.

[131]

J.-A. Sahel, “Spotlight on Childhood Blindness,” Journal of Clinical Investigation 121 (2011): 2145-2149.

[132]

A. V. Cideciyan, “Leber Congenital Amaurosis due to RPE65 Mutations and Its Treatment With Gene Therapy,” Progress in Retinal and Eye Research 29 (2010): 398-427.

[133]

S. Boutin, V. Monteilhet, P. Veron, et al., “Prevalence of Serum IgG and Neutralizing Factors Against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: Implications for Gene Therapy Using AAV Vectors,” Human Gene Therapy 21 (2010): 704-712.

[134]

H. C. Verdera, K. Kuranda, and F. Mingozzi, “AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer,” Molecular Therapy 28 (2020): 723-746.

[135]

R. Calcedo, L. H. Vandenberghe, G. Gao, J. Lin, and J. M. Wilson, “Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses,” Journal of Infectious Diseases 199 (2009): 381-390.

[136]

K. S. Hanlon, B. P. Kleinstiver, S. P. Garcia, et al., “High Levels of AAV Vector Integration Into CRISPR-Induced DNA Breaks,” Nature Communications 10 (2019): 4439.

[137]

F. Mingozzi and K. A. High, “Therapeutic In Vivo Gene Transfer for Genetic Disease Using AAV: Progress and Challenges,” Nature Reviews. Genetics 12 (2011): 341-355.

[138]

I. Trapani, P. Colella, A. Sommella, et al., “Effective Delivery of Large Genes to the Retina by Dual AAV Vectors,” EMBO Molecular Medicine 6 (2013): 194-211.

[139]

A. Srivastava, K. M. G. Mallela, N. Deorkar, and G. Brophy, “Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors,” Journal of Pharmaceutical Sciences 110 (2021): 2609-2624.

[140]

T. Wei, Y. Sun, Q. Cheng, et al., “Lung SORT LNPs Enable Precise Homology-Directed Repair Mediated CRISPR/Cas Genome Correction in Cystic Fibrosis Models,” Nature Communications 14 (2023): 7322.

[141]

S. Liu, Q. Cheng, T. Wei, et al., “Membrane-Destabilizing Ionizable Phospholipids for Organ-Selective mRNA Delivery and CRISPR-Cas Gene Editing,” Nature Materials 20 (2021): 701-710.

[142]

T. Wei, Q. Cheng, L. Farbiak, D. G. Anderson, R. Langer, and D. J. Siegwart, “Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing,” ACS Nano 14 (2020): 9243-9262.

[143]

Q. Cheng, T. Wei, L. Farbiak, L. T. Johnson, S. A. Dilliard, and D. J. Siegwart, “Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR-Cas Gene Editing,” Nature Nanotechnology 15 (2020): 313-320.

[144]

T. Wei, Q. Cheng, Y. L. Min, E. N. Olson, and D. J. Siegwart, “Systemic Nanoparticle Delivery of CRISPR-Cas9 Ribonucleoproteins for Effective Tissue Specific Genome Editing,” Nature Communications 11 (2020): 1-12.

[145]

S. Banskota, A. Raguram, S. Suh, et al., “Engineered Virus-Like Particles for Efficient In-Vivo Delivery of Therapeutic Proteins,” Cell 185 (2022): 250-265.e216.

[146]

X. Yan, Q. Pan, H. Xin, Y. Chen, and Y. Ping, “Genome-Editing Prodrug: Targeted Delivery and Conditional Stabilization of CRISPR-Cas9 for Precision Therapy of Inflammatory Disease,” Science Advances 7 (2021): eabj0624.

[147]

Y. Rui, D. R. Wilson, J. Choi, et al., “Carboxylated Branched Poly(β-Amino Ester) Nanoparticles Enable Robust Cytosolic Protein Delivery and CRISPR-Cas9 Gene Editing,” Science Advances 5 (2019): eaay3255.

[148]

Y. Lin, X. Luo, T. Burghardt, et al., “Chemical Evolution of Amphiphilic Xenopeptides for Potentiated Cas9 Ribonucleoprotein Delivery,” Journal of the American Chemical Society 145 (2023): 15171-15179.

[149]

Y. Lin, U. Wilk, J. Pöhmerer, et al., “Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells,” Small 19 (2023): 2205318.

[150]

B. Lee, K. Lee, S. Panda, et al., “Nanoparticle Delivery of CRISPR Into the Brain Rescues a Mouse Model of Fragile X Syndrome From Exaggerated Repetitive Behaviours,” Nature Biomedical Engineering 2 (2018): 497-507.

[151]

M. Sun, L. Xu, A. Qu, et al., “Site-Selective Photoinduced Cleavage and Profiling of DNA by Chiral Semiconductor Nanoparticles,” Nature Chemistry 10 (2018): 821-830.

[152]

Y. Lin, E. Wagner, and U. Lächelt, “Non-Viral Delivery of the CRISPR/Cas System: DNA Versus RNA Versus RNP,” Biomaterials Science 10 (2022): 1166-1192.

[153]

L. J. Kubiatowicz, A. Mohapatra, N. Krishnan, R. H. Fang, and L. Zhang, “mRNA Nanomedicine: Design and Recent Applications,” Exploration (Beijing) 2 (2022): 20210217.

[154]

M. Qiu, Y. Li, H. Bloomer, and Q. Xu, “Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing,” Accounts of Chemical Research 54 (2021): 4001-4011.

[155]

X. Hou, T. Zaks, R. Langer, and Y. Dong, “Lipid Nanoparticles for mRNA Delivery,” Nature Reviews Materials 6 (2021): 1078-1094.

[156]

Y. Eygeris, M. Gupta, J. Kim, and G. Sahay, “Chemistry of Lipid Nanoparticles for RNA Delivery,” Accounts of Chemical Research 55 (2021): 2-12.

[157]

K. Musunuru, A. C. Chadwick, T. Mizoguchi, et al., “In Vivo CRISPR Base Editing of PCSK9 Durably Lowers Cholesterol in Primates,” Nature 593 (2021): 429-434.

[158]

J. D. Gillmore, E. Gane, J. Taubel, et al., “CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis,” New England Journal of Medicine 385 (2021): 493-502.

[159]

E. Kenjo, H. Hozumi, Y. Makita, et al., “Low Immunogenicity of LNP Allows Repeated Administrations of CRISPR-Cas9 mRNA Into Skeletal Muscle in Mice,” Nature Communications 12 (2021): 7101.

[160]

D. Rosenblum, A. Gutkin, R. Kedmi, et al., “CRISPR-Cas9 Genome Editing Using Targeted Lipid Nanoparticles for Cancer Therapy,” Science Advances 6 (2020): eabc9450.

[161]

M. Herrera-Barrera, M. Gautam, A. Lokras, K. Vlasova, C. Foged, and G. Sahay, “Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors,” AAPS Journal 25 (2023): 65.

[162]

A. Bratulic, Prime Medicine Touts Preclinical Success for Next-Gen Gene Editing Approach (New York: FirstWord PHARMA, 2023).

[163]

K. Chen, H. Han, S. Zhao, et al., “Lung and Liver Editing by Lipid Nanoparticle Delivery of a Stable CRISPR-Cas9 Ribonucleoprotein,” Nature Biotechnology (2024), https://doi.org/10.1038/s41587-024-02437-3.

[164]

M. An, A. Raguram, S. W. Du, et al., “Engineered Virus-Like Particles for Transient Delivery of Prime Editor Ribonucleoprotein Complexes In Vivo,” Nature Biotechnology 42 (2024): 1-12.

[165]

J. Zhou, J. Zhang, and W. Gao, “Enhanced and Selective Delivery of Enzyme Therapy to 9L-Glioma Tumor via Magnetic Targeting of PEG-Modified, Beta-Glucosidase-Conjugated Iron Oxide Nanoparticles,” International Journal of Nanomedicine 9 (2014): 2905-2917.

[166]

X. Shen, A. Dirisala, M. Toyoda, et al., “pH-Responsive Polyzwitterion Covered Nanocarriers for DNA Delivery,” Journal of Controlled Release 360 (2023): 928-939.

[167]

L. Kudsiova, A. Lansley, G. Scutt, et al., “Stability Testing of the Pfizer-BioNTech BNT162b2 COVID-19 Vaccine: A Translational Study in UK Vaccination Centres,” BMJ Open Science 5 (2021): e100203.

[168]

K. N. Kafetzis, N. Papalamprou, E. McNulty, et al., “The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery,” Advanced Healthcare Materials 12 (2023): e2203022.

[169]

Y. Fu, J. A. Foden, C. Khayter, et al., “High-Frequency Off-Target Mutagenesis Induced by CRISPR-Cas Nucleases in Human Cells,” Nature Biotechnology 31 (2013): 822-826.

[170]

C. Kuscu, S. Arslan, R. Singh, J. Thorpe, and M. Adli, “Genome-Wide Analysis Reveals Characteristics of Off-Target Sites Bound by the Cas9 Endonuclease,” Nature Biotechnology 32 (2014): 677-683.

[171]

R. Gao, Z. C. Fu, X. Li, et al., “Genomic and Transcriptomic Analyses of Prime Editing Guide RNA-Independent off-Target Effects by Prime Editors,” CRISPR Journal 5 (2022): 276-293.

[172]

S. Jin, Q. Lin, Y. Luo, et al., “Genome-Wide Specificity of Prime Editors in Plants,” Nature Biotechnology 39 (2021): 1292-1299.

[173]

N. Mathis, A. Allam, A. Tálas, et al., “Machine Learning Prediction of Prime Editing Efficiency Across Diverse Chromatin Contexts,” Nature Biotechnology (2024): 1-8.

[174]

G. Yu, H. K. Kim, J. Park, et al., “Prediction of Efficiencies for Diverse Prime Editing Systems in Multiple Cell Types,” Cell 186 (2023): 2256-2272.e2223.

[175]

S. Q. Liang, P. Liu, K. Ponnienselvan, et al., “Genome-Wide Profiling of Prime Editor Off-Target Sites In Vitro and In Vivo Using PE-Tag,” Nature Methods 20 (2023): 898-907.

[176]

S. Q. Tsai, Z. Zheng, N. T. Nguyen, et al., “GUIDE-Seq Enables Genome-Wide Profiling of Off-Target Cleavage by CRISPR-Cas Nucleases,” Nature Biotechnology 33 (2015): 187-197.

[177]

J. Y. Hsu, J. Grunewald, R. Szalay, et al., “PrimeDesign Software for Rapid and Simplified Design of Prime Editing Guide RNAs,” Nature Communications 12 (2021): 1034.

[178]

Y. Li, J. Chen, S. Q. Tsai, and Y. Cheng, “Easy-Prime: A Machine Learning-Based Prime Editor Design Tool,” Genome Biology 22 (2021): 1-11.

[179]

Z. Yu, Z. Lu, J. Li, et al., “PEAC-Seq Adopts Prime Editor to Detect CRISPR Off-Target and DNA Translocation,” Nature Communications 13 (2022): 7545.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/