PDF
Abstract
Pathological changes in the locus coeruleus-norepinephrine (LC-NE) neurons, the major source of norepinephrine (NE, also known as noradrenaline) in the brain, are evident during the early stages of neurodegenerative diseases (ND). Research on both human and animal models have highlighted the therapeutic potential of targeting the LC-NE system to mitigate the progression of ND and alleviate associated psychiatric symptoms. However, the early and widespread degeneration of the LC-NE system presents a significant challenge for direct intervention in ND. Recent advances in regenerative cell therapy offer promising new strategies for ND treatment. The regeneration of LC-NE from pluripotent stem cells (PSCs) could significantly broaden the scope of LC-NE-based therapies for ND. In this review, we delve into the fundamental background and physiological functions of LC-NE. Additionally, we systematically examine the evidence and role of the LC-NE system in the neuropathology of ND and psychiatric diseases over recent years. Notably, we focus on the significance of PSCs-derived LC-NE and its potential impact on ND therapy. A deeper understanding and further investigation into the regeneration of LC-NE function could pave the way for practical and effective treatments for ND.
Keywords
locus coeruleus
/
neurodegenerative diseases
/
norepinephrine neurons
/
pluripotent stem cells
/
psychiatric diseases
Cite this article
Download citation ▾
Yana Yang, Yunlong Tao.
Regenerating Locus Coeruleus-Norepinephrine (LC-NE) Function: A Novel Approach for Neurodegenerative Diseases.
Cell Proliferation, 2025, 58(6): e13807 DOI:10.1111/cpr.13807
| [1] |
V. Breton-Provencher, G. T. Drummond, and M. Sur, “Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets,” Frontiers in Neural Circuits 15 (2021): 638007.
|
| [2] |
D. L. Feinstein, S. Kalinin, and D. Braun, “Causes, Consequences, and Cures for Neuroinflammation Mediated via the Locus Coeruleus: Noradrenergic Signaling System,” Journal of Neurochemistry 139, no. Suppl 2 (2016): 154-178.
|
| [3] |
F. Sivandzade and L. Cucullo, “In-Vitro Blood-Brain Barrier Modeling: A Review of Modern and Fast-Advancing Technologies,” Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 38, no. 10 (2018): 1667-1681.
|
| [4] |
F. Sivandzade and L. Cucullo, “Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview,” International Journal of Molecular Sciences 22, no. 4 (2021): 2153-2173.
|
| [5] |
A. Dahlström and K. Fuxe, “Localization of Monoamines in the Lower Brain Stem,” Experientia 20, no. 7 (1964): 398-399.
|
| [6] |
Y. Sharma, T. Xu, W. M. Graf, et al., “Comparative Anatomy of the Locus Coeruleus in Humans and Nonhuman Primates,” Journal of Comparative Neurology 518, no. 7 (2010): 963-971.
|
| [7] |
P. R. Mouton, B. Pakkenberg, H. J. G. Gundersen, and D. L. Price, “Absolute Number and Size of Pigmented Locus Coeruleus Neurons in Young and Aged Individuals,” Journal of Chemical Neuroanatomy 7, no. 3 (1994): 185-190.
|
| [8] |
K. Satoh, M. Tohyama, K. Yamamoto, T. Sakumoto, and N. Shimizu, “Noradrenaline Innervation of the Spinal Cord Studied by the Horseradish Peroxidase Method Combined With Monoamine Oxidase Staining,” Experimental Brain Research 30, no. 2-3 (1977): 175-186.
|
| [9] |
S. E. Loughlin, S. L. Foote, and R. Grzanna, “Efferent Projections of Nucleus Locus Coeruleus: Morphologic Subpopulations Have Different Efferent Targets,” Neuroscience 18, no. 2 (1986): 307-319.
|
| [10] |
V. M. Pickel, M. Segal, and F. E. Bloom, “A Radioautographic Study of the Efferent Pathways of the Nucleus Locus Coeruleus,” Journal of Comparative Neurology 155, no. 1 (1974): 15-42.
|
| [11] |
S. J. Sara and S. Bouret, “Orienting and Reorienting: The Locus Coeruleus Mediates Cognition Through Arousal,” Neuron 76, no. 1 (2012): 130-141.
|
| [12] |
S. J. Sara, “The Locus Coeruleus and Noradrenergic Modulation of Cognition,” Nature Reviews. Neuroscience 10, no. 3 (2009): 211-223.
|
| [13] |
Y. U. Liu, Y. Ying, Y. Li, et al., “Neuronal Network Activity Controls Microglial Process Surveillance in Awake Mice via Norepinephrine Signaling,” Nature Neuroscience 22, no. 11 (2019): 1771-1781.
|
| [14] |
H. Hayat, N. Regev, N. Matosevich, et al., “Locus Coeruleus Norepinephrine Activity Mediates Sensory-Evoked Awakenings From SleeScience,” Advances 6, no. 15 (2020): eaaz4232.
|
| [15] |
V. Breton-Provencher, G. T. Drummond, J. Feng, Y. Li, and M. Sur, “Spatiotemporal Dynamics of Noradrenaline During Learned Behaviour,” Nature 606, no. 7915 (2022): 732-738.
|
| [16] |
E. E. Benarroch, “Locus coeruleus,” Cell and Tissue Research 373, no. 1 (2018): 221-232.
|
| [17] |
G. R. Poe, S. Foote, O. Eschenko, et al., “Locus Coeruleus: A New Look at the Blue Spot,” Nature Reviews. Neuroscience 21, no. 11 (2020): 644-659.
|
| [18] |
D. J. Chandler, P. Jensen, J. G. McCall, A. E. Pickering, L. A. Schwarz, and N. K. Totah, “Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 39, no. 42 (2019): 8239-8249.
|
| [19] |
N. K. Totah, R. M. Neves, S. Panzeri, N. K. Logothetis, and O. Eschenko, “The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System,” Neuron 99, no. 5 (2018): 1055-1068.e6.
|
| [20] |
B. Mulvey, D. L. Bhatti, S. Gyawali, et al., “Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus,” Cell Reports 23, no. 8 (2018): 2225-2235.
|
| [21] |
L. M. Weber, H. R. Divecha, M. N. Tran, et al., “The Gene Expression Landscape of the Human Locus Coeruleus Revealed by Single-Nucleus and Spatially-Resolved Transcriptomics,” eLife 12 (2024): 12.
|
| [22] |
S. C. Kelly, B. He, S. E. Perez, S. D. Ginsberg, E. J. Mufson, and S. E. Counts, “Locus Coeruleus Cellular and Molecular Pathology During the Progression of Alzheimer's Disease,” Acta Neuropathologica Communications 5, no. 1 (2017): 8.
|
| [23] |
L. W. Swanson, “The Locus Coeruleus: A Cytoarchitectonic, Golgi and Immunohistochemical Study in the Albino Rat,” Brain Research 110, no. 1 (1976): 39-56.
|
| [24] |
V. R. Holets, T. Hökfelt, Å. Rökaeus, L. Terenius, and M. Goldstein, “Locus Coeruleus Neurons in the Rat Containing Neuropeptide Y, Tyrosine Hydroxylase or Galanin and Their Efferent Projections to the Spinal Cord, Cerebral Cortex and Hypothalamus,” Neuroscience 24, no. 3 (1988): 893-906.
|
| [25] |
L. A. Schwarz and L. Luo, “Organization of the Locus Coeruleus-Norepinephrine System,” Current Biology: CB 25, no. 21 (2015): R1051-R1056.
|
| [26] |
W. S. Young and M. J. Kuhar, “Noradrenergic Alpha 1 and Alpha 2 Receptors: Light Microscopic Autoradiographic Localization,” Proceedings of the National Academy of Sciences of the United States of America 77, no. 3 (1980): 1696-1700.
|
| [27] |
T. M. Egan and R. A. North, “Actions of Acetylcholine and Nicotine on Rat Locus Coeruleus Neurons In Vitro,” Neuroscience 19, no. 2 (1986): 565-571.
|
| [28] |
J. M. Luque, P. Malherbe, and J. G. Richards, “Localization of GABAA Receptor Subunit mRNAs in the Rat Locus Coeruleus,” Brain Research. Molecular Brain Research 24, no. 1-4 (1994): 219-226.
|
| [29] |
J. N. Marcus, C. J. Aschkenasi, C. E. Lee, et al., “Differential Expression of Orexin Receptors 1 and 2 in the Rat Brain,” Journal of Comparative Neurology 435, no. 1 (2001): 6-25.
|
| [30] |
A. Mansour, C. A. Fox, S. Burke, et al., “Mu, Delta, and Kappa Opioid Receptor mRNA Expression in the Rat CNS: An In Situ Hybridization Study,” Journal of Comparative Neurology 350, no. 3 (1994): 412-438.
|
| [31] |
C. Léna, A. de Kerchove d'Exaerde, M. Cordero-Erausquin, N. le Novère, M. del Mar Arroyo-Jimenez, and J. P. Changeux, “Diversity and Distribution of Nicotinic Acetylcholine Receptors in the Locus Ceruleus Neurons,” Proceedings of the National Academy of Sciences of the United States of America 96, no. 21 (1999): 12126-12131.
|
| [32] |
G. Eisenhofer, I. J. Kopin, and D. S. Goldstein, “Catecholamine Metabolism: A Contemporary View With Implications for Physiology and Medicine,” Pharmacological Reviews 56, no. 3 (2004): 331-349.
|
| [33] |
A. J. Espay, P. A. LeWitt, and H. Kaufmann, “Norepinephrine Deficiency in Parkinson's Disease: The Case for Noradrenergic Enhancement,” Movement Disorders: Official Journal of the Movement Disorder Society 29, no. 14 (2014): 1710-1719.
|
| [34] |
E. Szabadi, “Functional Neuroanatomy of the Central Noradrenergic System,” Journal of Psychopharmacology (Oxford, England) 27, no. 8 (2013): 659-693.
|
| [35] |
S. E. Loughlin, S. L. Foote, and F. E. Bloom, “Efferent Projections of Nucleus Locus Coeruleus: Topographic Organization of Cells of Origin Demonstrated by Three-Dimensional Reconstruction,” Neuroscience 18, no. 2 (1986): 291-306.
|
| [36] |
S. D. Robertson, N. W. Plummer, J. de Marchena, and P. Jensen, “Developmental Origins of Central Norepinephrine Neuron Diversity,” Nature Neuroscience 16, no. 8 (2013): 1016-1023.
|
| [37] |
P. Gaspar, B. Berger, A. Febvret, A. Vigny, and J. P. Henry, “Catecholamine Innervation of the Human Cerebral Cortex as Revealed by Comparative Immunohistochemistry of Tyrosine Hydroxylase and Dopamine-Beta-Hydroxylase,” Journal of Comparative Neurology 279, no. 2 (1989): 249-271.
|
| [38] |
J. H. Morrison, S. L. Foote, D. O'Connor, and F. E. Bloom, “Laminar, Tangential and Regional Organization of the Noradrenergic Innervation of Monkey Cortex: Dopamine-Beta-Hydroxylase Immunohistochemistry,” Brain Research Bulletin 9, no. 1-6 (1982): 309-319.
|
| [39] |
D. A. Lewis and J. H. Morrison, “Noradrenergic Innervation of Monkey Prefrontal Cortex: A Dopamine-Beta-Hydroxylase Immunohistochemical Study,” Journal of Comparative Neurology 282, no. 3 (1989): 317-330.
|
| [40] |
G. Jaim-Etcheverry and L. M. Zieher, “DSP-4: A Novel Compound With Neurotoxic Effects on Noradrenergic Neurons of Adult and Developing Rats,” Brain Research 188, no. 2 (1980): 513-523.
|
| [41] |
J. H. Medina and M. L. Novas, “Parallel Changes in Brain Flunitrazepam Binding and Density of Noradrenergic Innervation,” European Journal of Pharmacology 88, no. 4 (1983): 377-382.
|
| [42] |
K. L. Lovell, “Effects of 6-Hydroxydopamine-Induced Norepinephrine Depletion on Cerebellar Development,” Developmental Neuroscience 5, no. 4 (1982): 359-368.
|
| [43] |
J. R. Schank, R. Ventura, S. Puglisi-Allegra, et al., “Dopamine Beta-Hydroxylase Knockout Mice Have Alterations in Dopamine Signaling and Are Hypersensitive to Cocaine,” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 31, no. 10 (2006): 2221-2230.
|
| [44] |
A. Gheidi, C. J. Davidson, S. C. Simpson, et al., “Norepinephrine Depletion in the Brain Sex-Dependently Modulates Aspects of Spatial Learning and Memory in Female and Male Rats,” Psychopharmacology 240, no. 12 (2023): 2585-2595.
|
| [45] |
L. Li, X. Feng, Z. Zhou, et al., “Stress Accelerates Defensive Responses to Looming in Mice and Involves a Locus Coeruleus-Superior Colliculus Projection,” Current Biology 28, no. 6 (2018): 859-871.e5.
|
| [46] |
K. M. Khan, N. Balasubramanian, G. Gaudencio, et al., “Human Tau-Overexpressing Mice Recapitulate Brainstem Involvement and Neuropsychiatric Features of Early Alzheimer's Disease,” Acta Neuropathologica Communications 11, no. 1 (2023): 57.
|
| [47] |
E. S. Musiek, D. D. Xiong, and D. M. Holtzman, “Sleep, Circadian Rhythms, and the Pathogenesis of Alzheimer Disease,” Experimental & Molecular Medicine 47, no. 3 (2015): e148.
|
| [48] |
B. Barun, “Pathophysiological Background and Clinical Characteristics of Sleep Disorders in Multiple Sclerosis,” Clinical Neurology and Neurosurgery 115, no. Suppl 1 (2013): S82-S85.
|
| [49] |
B. J. Matchett, L. T. Grinberg, P. Theofilas, and M. E. Murray, “The Mechanistic Link Between Selective Vulnerability of the Locus Coeruleus and Neurodegeneration in Alzheimer's Disease,” Acta Neuropathologica 141, no. 5 (2021): 631-650.
|
| [50] |
A. K. Evans, E. Defensor, and M. Shamloo, “Selective Vulnerability of the Locus Coeruleus Noradrenergic System and Its Role in Modulation of Neuroinflammation, Cognition, and Neurodegeneration,” Frontiers in Pharmacology 13 (2022): 1030609.
|
| [51] |
H. Braak and K. Del Tredici, “The Pathological Process Underlying Alzheimer's Disease in Individuals Under Thirty,” Acta Neuropathologica 121, no. 2 (2011): 171-181.
|
| [52] |
D. Sulzer, J. Bogulavsky, K. E. Larsen, et al., “Neuromelanin Biosynthesis Is Driven by Excess Cytosolic Catecholamines Not Accumulated by Synaptic Vesicles,” Proceedings of the National Academy of Sciences of the United States of America 97, no. 22 (2000): 11869-11874.
|
| [53] |
K. S. Kendler, “Are Psychiatric Disorders Brain Diseases?-A New Look at an Old Question,” JAMA Psychiatry 81, no. 4 (2024): 325-326.
|
| [54] |
G. B. Stefano, P. Büttiker, S. Weissenberger, et al., “Artificial Intelligence: Deciphering the Links Between Psychiatric Disorders and Neurodegenerative Disease,” Brain Sciences 13, no. 7 (2023): 1055-1058.
|
| [55] |
D. Veréb, M. Mijalkov, A. Canal-Garcia, et al., “Age-Related Differences in the Functional Topography of the Locus Coeruleus and Their Implications for Cognitive and Affective Functions,” eLife 12 (2023): 12.
|
| [56] |
L. Flores-Aguilar, H. Hall, C. Orciani, et al., “Early Loss of Locus Coeruleus Innervation Promotes Cognitive and Neuropathological Changes Before Amyloid Plaque Deposition in a Transgenic Rat Model of Alzheimer's Disease,” Neuropathology and Applied Neurobiology 48, no. 6 (2022): e12835.
|
| [57] |
A. F. Iannitelli, M. A. Kelberman, D. J. Lustberg, et al., “The Neurotoxin DSP-4 Dysregulates the Locus Coeruleus-Norepinephrine System and Recapitulates Molecular and Behavioral Aspects of Prodromal Neurodegenerative Disease,” ENeuro 10, no. 1 (2023): ENEURO.0483-22.2022.
|
| [58] |
N. Falgàs, M. Peña-González, A. Val-Guardiola, et al., “Locus Coeruleus Integrity and Neuropsychiatric Symptoms in a Cohort of Early- and Late-Onset Alzheimer's Disease,” Alzheimer's & Dementia: The Journal of the Alzheimer's Association 20 (2024): 6351-6364.
|
| [59] |
M. T. Ferretti, S. Allard, V. Partridge, A. Ducatenzeiler, and A. C. Cuello, “Minocycline Corrects Early, Pre-Plaque Neuroinflammation and Inhibits BACE-1 in a Transgenic Model of Alzheimer's Disease-Like Amyloid Pathology,” Journal of Neuroinflammation 9 (2012): 62.
|
| [60] |
M. J. Dahl, M. Mather, M. Werkle-Bergner, et al., “Locus Coeruleus Integrity Is Related to Tau Burden and Memory Loss in Autosomal-Dominant Alzheimer's Disease,” Neurobiology of Aging 112 (2022): 39-54.
|
| [61] |
H. I. L. Jacobs, J. A. Becker, K. Kwong, et al., “In Vivo and Neuropathology Data Support Locus Coeruleus Integrity as Indicator of Alzheimer's Disease Pathology and Cognitive Decline,” Science Translational Medicine 13, no. 612 (2021): eabj2511.
|
| [62] |
L. Hou, F. Sun, W. Sun, L. Zhang, and Q. Wang, “Lesion of the Locus Coeruleus Damages Learning and Memory Performance in Paraquat and Maneb-Induced Mouse Parkinson's Disease Model,” Neuroscience 419 (2019): 129-140.
|
| [63] |
C. Kjaerby, M. Andersen, N. Hauglund, et al., “Memory-Enhancing Properties of Sleep Depend on the Oscillatory Amplitude of Norepinephrine,” Nature Neuroscience 25, no. 8 (2022): 1059-1070.
|
| [64] |
S. Song, Q. Wang, L. Jiang, et al., “Noradrenergic Dysfunction Accelerates LPS-Elicited Inflammation-Related Ascending Sequential Neurodegeneration and Deficits in Non-motor/Motor Functions,” Brain, Behavior, and Immunity 81 (2019): 374-387.
|
| [65] |
C. Delaville, P. D. Deurwaerdère, and A. Benazzouz, “Noradrenaline and Parkinson's Disease,” Frontiers in Systems Neuroscience 5 (2011): 31.
|
| [66] |
T. Zaehle, I. Galazky, and K. Krauel, “The LC-NE System as a Potential Target for Neuromodulation to Ameliorate Non-motor Symptoms in Parkinson's Disease,” Autonomic Neuroscience: Basic & Clinical 236 (2021): 102901.
|
| [67] |
N. Pavese, M. Rivero-Bosch, S. J. Lewis, A. L. Whone, and D. J. Brooks, “Progression of Monoaminergic Dysfunction in Parkinson's Disease: A Longitudinal 18F-Dopa PET Study,” NeuroImage 56, no. 3 (2011): 1463-1468.
|
| [68] |
M. V. Simonini, P. E. Polak, A. Sharp, S. McGuire, E. Galea, and D. L. Feinstein, “Increasing CNS Noradrenaline Reduces EAE Severity,” Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology 5, no. 2 (2010): 252-259.
|
| [69] |
P. E. Polak, S. Kalinin, and D. L. Feinstein, “Locus Coeruleus Damage and Noradrenaline Reductions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis,” Brain: A Journal of Neurology 134, no. Pt 3 (2011): 665-677.
|
| [70] |
R. Bernard, I. A. Kerman, R. C. Thompson, et al., “Altered Expression of Glutamate Signaling, Growth Factor, and Glia Genes in the Locus Coeruleus of Patients With Major Depression,” Molecular Psychiatry 16, no. 6 (2011): 634-646.
|
| [71] |
M. F. Oginsky, N. Cui, W. Zhong, C. M. Johnson, and C. Jiang, “Alterations in the Cholinergic System of Brain Stem Neurons in a Mouse Model of Rett Syndrome,” American Journal of Physiology. Cell Physiology 307, no. 6 (2014): C508-C520.
|
| [72] |
Y.-N. Yang, M. Q. Zhang, F. L. Yu, et al., “Peroxisom Proliferator-Activated Receptor-γ Coactivator-1α in Neurodegenerative Disorders: A Promising Therapeutic Target,” Biochemical Pharmacology 215 (2023): 115717.
|
| [73] |
W. Bondareff, C. Q. Mountjoy, and M. Roth, “Selective Loss of Neurones of Origin of Adrenergic Projection to Cerebral Cortex (Nucleus Locus Coeruleus) in Senile Dementia,” Lancet 1, no. 8223 (1981): 783-784.
|
| [74] |
D. R. Thal, U. Rüb, M. Orantes, and H. Braak, “Phases of A Beta-Deposition in the Human Brain and Its Relevance for the Development of AD,” Neurology 58, no. 12 (2002): 1791-1800.
|
| [75] |
P. Theofilas, A. J. Ehrenberg, S. Dunlop, et al., “Locus Coeruleus Volume and Cell Population Changes During Alzheimer's Disease Progression: A Stereological Study in Human Postmortem Brains With Potential Implication for Early-Stage Biomarker Discovery,” Alzheimer's & Dementia: The Journal of the Alzheimer's Association 13, no. 3 (2017): 236-246.
|
| [76] |
J. Oh, R. A. Eser, A. J. Ehrenberg, et al., “Profound Degeneration of Wake-Promoting Neurons in Alzheimer's Disease,” Alzheimer's & Dementia: The Journal of the Alzheimer's Association 15, no. 10 (2019): 1253-1263.
|
| [77] |
R. Beardmore, R. Hou, A. Darekar, et al., “The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review,” Journal of Alzheimer's Disease: JAD 83, no. 1 (2021): 5-22.
|
| [78] |
Y. Chen, T. Chen, and R. Hou, “Locus Coeruleus in the Pathogenesis of Alzheimer's Disease: A Systematic Review,” Alzheimer's & Dementia 8, no. 1 (2022): e12257.
|
| [79] |
C.-P. Lin, I. Frigerio, J. G. J. M. Bol, et al., “Microstructural Integrity of the Locus Coeruleus and Its Tracts Reflect Noradrenergic Degeneration in Alzheimer's Disease and Parkinson's Disease,” Translational Neurodegeneration 13, no. 1 (2024): 9.
|
| [80] |
F. E. McAlpine, J. K. Lee, A. S. Harms, et al., “Inhibition of Soluble TNF Signaling in a Mouse Model of Alzheimer's Disease Prevents Pre-Plaque Amyloid-Associated Neuropathology,” Neurobiology of Disease 34, no. 1 (2009): 163-177.
|
| [81] |
L. Kelly, M. Seifi, R. Ma, et al., “Identification of Intraneuronal Amyloid Beta Oligomers in Locus Coeruleus Neurons of Alzheimer's Patients and Their Potential Impact on Inhibitory Neurotransmitter Receptors and Neuronal Excitability,” Neuropathology and Applied Neurobiology 47, no. 4 (2021): 488-505.
|
| [82] |
S. S. Kang, X. Liu, E. H. Ahn, et al., “Norepinephrine Metabolite DOPEGAL Activates AEP and Pathological Tau Aggregation in Locus Coeruleus,” Journal of Clinical Investigation 130, no. 1 (2020): 422-437.
|
| [83] |
F. S. Giorgi, F. Biagioni, A. Galgani, N. Pavese, G. Lazzeri, and F. Fornai, “Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia,” International Journal of Molecular Sciences 21, no. 22 (2020): 8630-8650.
|
| [84] |
O. Baytas, J. A. Kauer, and E. M. Morrow, “Loss of Mitochondrial Enzyme GPT2 Causes Early Neurodegeneration in Locus Coeruleus,” Neurobiology of Disease 173 (2022): 105831.
|
| [85] |
S. S. Kang, E. H. Ahn, X. Liu, et al., “ApoE4 Inhibition of VMAT2 in the Locus Coeruleus Exacerbates Tau Pathology in Alzheimer's Disease,” Acta Neuropathologica 142, no. 1 (2021): 139-158.
|
| [86] |
M. P. Kummer, T. Hammerschmidt, A. Martinez, et al., “Ear2 Deletion Causes Early Memory and Learning Deficits in APP/PS1 Mice,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 34, no. 26 (2014): 8845-8854.
|
| [87] |
K. S. Rommelfanger and D. Weinshenker, “Norepinephrine: The Redheaded Stepchild of Parkinson's Disease,” Biochemical Pharmacology 74, no. 2 (2007): 177-190.
|
| [88] |
R. R. Wyrofsky, B. A. S. Reyes, X. Y. Zhang, S. Bhatnagar, L. G. Kirby, and E. J. van Bockstaele, “Endocannabinoids, Stress Signaling, and the Locus Coeruleus-Norepinephrine System,” Neurobiology of Stress 11 (2019): 100176.
|
| [89] |
L. A. Matschke, M. A. Komadowski, A. Stöhr, et al., “Enhanced Firing of Locus Coeruleus Neurons and SK Channel Dysfunction Are Conserved in Distinct Models of Prodromal Parkinson's Disease,” Scientific Reports 12, no. 1 (2022): 3180.
|
| [90] |
L. M. Butkovich, M. C. Houser, T. Chalermpalanupap, et al., “Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 40, no. 39 (2020): 7559-7576.
|
| [91] |
A. F. Iannitelli, L. Hassenein, B. Mulvey, et al., Tyrosinase-Induced Neuromelanin Accumulation Triggers Rapid Dysregulation and Degeneration of the Mouse Locus Coeruleus (England: BioRxiv: The Preprint Server For Biology, 2023).
|
| [92] |
K. Cui, F. Yang, T. Tufan, et al., “Restoration of Noradrenergic Function in Parkinson's Disease Model Mice,” ASN Neuro 13 (2021): 17590914211009730.
|
| [93] |
Y. Zhan, M. U. Raza, L. Yuan, and M. Y. Zhu, “Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability,” Neuroscience 422 (2019): 184-201.
|
| [94] |
B. Huynh, Y. Fu, D. Kirik, J. M. Shine, and G. M. Halliday, “Comparison of Locus Coeruleus Pathology With Nigral and Forebrain Pathology in Parkinson's Disease,” Movement Disorders: Official Journal of the Movement Disorder Society 36, no. 9 (2021): 2085-2093.
|
| [95] |
Y. Mukai, T. S. Okubo, M. Lazarus, D. Ono, K. F. Tanaka, and A. Yamanaka, “Prostaglandin E2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 43, no. 47 (2023): 7982-7999.
|
| [96] |
O. Borodovitsyna, B. C. Duffy, A. E. Pickering, and D. J. Chandler, “Anatomically and Functionally Distinct Locus Coeruleus Efferents Mediate Opposing Effects on Anxiety-Like Behavior,” Neurobiology of Stress 13 (2020): 100284.
|
| [97] |
M. Privitera, L. M. von Ziegler, A. Floriou-Servou, et al., “Noradrenaline Release From the Locus Coeruleus Shapes Stress-Induced Hippocampal Gene Expression,” eLife 12 (2024): 12.
|
| [98] |
C. Walton, R. King, L. Rechtman, et al., “Rising Prevalence of Multiple Sclerosis Worldwide: Insights From the Atlas of MS,” in Multiple Sclerosis, vol. 26, 3rd ed. (Houndmills, Basingstoke, England: SAGE Publications Ltd., 2020), 1816-1821.
|
| [99] |
D. S. Reich, C. F. Lucchinetti, and P. A. Calabresi, “Multiple Sclerosis,” New England Journal of Medicine 378, no. 2 (2018): 169-180.
|
| [100] |
T. Carandini, M. Mancini, I. Bogdan, et al., “In Vivo Evidence of Functional Disconnection Between Brainstem Monoaminergic Nuclei and Brain Networks in Multiple Sclerosis,” Multiple Sclerosis and Related Disorders 56 (2021): 103224.
|
| [101] |
A. Carotenuto, H. Wilson, B. Giordano, et al., “Impaired Connectivity Within Neuromodulatory Networks in Multiple Sclerosis and Clinical Implications,” Journal of Neurology 267, no. 7 (2020): 2042-2053.
|
| [102] |
A. E. Kirkland, M. C. Fadus, S. A. Gruber, K. M. Gray, T. E. Wilens, and L. M. Squeglia, “A Scoping Review of the Use of Cannabidiol in Psychiatric Disorders,” Psychiatry Research 308 (2022): 114347.
|
| [103] |
D. Weinshenker, “Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease,” Trends in Neurosciences 41, no. 4 (2018): 211-223.
|
| [104] |
T. James, B. Kula, S. Choi, S. S. Khan, L. K. Bekar, and N. A. Smith, “Locus Coeruleus in Memory Formation and Alzheimer's Disease,” European Journal of Neuroscience 54, no. 8 (2021): 6948-6959.
|
| [105] |
J. G. McCall, R. al-Hasani, E. R. Siuda, et al., “CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety,” Neuron 87, no. 3 (2015): 605-620.
|
| [106] |
R. P. Tillage, S. L. Foster, D. Lustberg, L. C. Liles, K. E. McCann, and D. Weinshenker, “Co-Released Norepinephrine and Galanin Act on Different Timescales to Promote Stress-Induced Anxiety-Like Behavior,” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 46, no. 8 (2021): 1535-1543.
|
| [107] |
J. G. McCall, E. R. Siuda, D. L. Bhatti, et al., “Locus Coeruleus to Basolateral Amygdala Noradrenergic Projections Promote Anxiety-Like Behavior,” eLife 6 (2017): 6.
|
| [108] |
S. Liu, A. Abdellaoui, K. J. H. Verweij, and G. A. van Wingen, “Gene Expression Has Distinct Associations With Brain Structure and Function in Major Depressive Disorder. Advanced Science,” Advanced Science 10, no. 7 (2023): e2205486.
|
| [109] |
K. Seki, S. Yoshida, and M. K. Jaiswal, “Molecular Mechanism of Noradrenaline During the Stress-Induced Major Depressive Disorder,” Neural Regeneration Research 13, no. 7 (2018): 1159-1169.
|
| [110] |
A. Guinea-Izquierdo, M. Giménez, I. Martínez-Zalacaín, et al., “Lower Locus Coeruleus MRI Intensity in Patients With Late-Life Major Depression,” PeerJ 9 (2021): e10828.
|
| [111] |
L. Jacobson, “Glucocorticoid Receptor Deletion From Locus Coeruleus Norepinephrine Neurons Promotes Depression-Like Social Withdrawal in Female but Not Male Mice,” Brain Research 1710 (2019): 82-91.
|
| [112] |
S. Zhang, C. M. Johnson, N. Cui, et al., “An Optogenetic Mouse Model of Rett Syndrome Targeting on Catecholaminergic Neurons,” Journal of Neuroscience Research 94, no. 10 (2016): 896-906.
|
| [113] |
J. A. Ross, P. McGonigle, and E. J. Van Bockstaele, “Locus Coeruleus, Norepinephrine and Aβ Peptides in Alzheimer's Disease,” Neurobiology of Stress 2 (2015): 73-84.
|
| [114] |
S. Makino, M. A. Smith, and P. W. Gold, “Regulatory Role of Glucocorticoids and Glucocorticoid Receptor mRNA Levels on Tyrosine Hydroxylase Gene Expression in the Locus Coeruleus During Repeated Immobilization Stress,” Brain Research 943, no. 2 (2002): 216-223.
|
| [115] |
D. C. German, K. F. Manaye, C. L. White, et al., “Disease-Specific Patterns of Locus Coeruleus Cell Loss,” Annals of Neurology 32, no. 5 (1992): 667-676.
|
| [116] |
I. L. Gutiérrez, M. González-Prieto, J. R. Caso, B. García-Bueno, J. C. Leza, and J. L. M. Madrigal, “Reboxetine Treatment Reduces Neuroinflammation and Neurodegeneration in the 5xFAD Mouse Model of Alzheimer's Disease: Role of CCL2,” Molecular Neurobiology 56, no. 12 (2019): 8628-8642.
|
| [117] |
A. I. Levey, D. Qiu, L. Zhao, et al., “A Phase II Study Repurposing Atomoxetine for Neuroprotection in Mild Cognitive Impairment,” Brain: A Journal of Neurology 145, no. 6 (2022): 1924-1938.
|
| [118] |
H. Tsunekawa, Y. Noda, A. Mouri, F. Yoneda, and T. Nabeshima, “Synergistic Effects of Selegiline and Donepezil on Cognitive Impairment Induced by Amyloid Beta (25-35),” Behavioural Brain Research 190, no. 2 (2008): 224-232.
|
| [119] |
D. Braun, J. L. M. Madrigal, and D. L. Feinstein, “Noradrenergic Regulation of Glial Activation: Molecular Mechanisms and Therapeutic Implications,” Current Neuropharmacology 12, no. 4 (2014): 342-352.
|
| [120] |
D. Braun and D. L. Feinstein, “The Locus Coeruleus Neuroprotective Drug Vindeburnol Normalizes Behavior in the 5xFAD Transgenic Mouse Model of Alzheimer's Disease,” Brain Research 1702 (2019): 29-37.
|
| [121] |
G. Kreiner, K. Rafa-Zabłocka, J. Barut, et al., “Stimulation of Noradrenergic Transmission by Reboxetine Is Beneficial for a Mouse Model of Progressive Parkinsonism,” Scientific Reports 9, no. 1 (2019): 5262.
|
| [122] |
R. Pacheco, F. Contreras, and M. Zouali, “The Dopaminergic System in Autoimmune Diseases,” Frontiers in Immunology 5 (2014): 117.
|
| [123] |
A. Torrillas-de la Cal, S. Torres-Sanchez, L. Bravo, et al., “Chemogenetic Activation of Locus Coeruleus Neurons Ameliorates the Severity of Multiple Sclerosis,” Journal of Neuroinflammation 20, no. 1 (2023): 198.
|
| [124] |
A. Mendiguren, E. Aostri, I. Rodilla, I. Pujana, E. Noskova, and J. Pineda, “Cannabigerol Modulates α2-Adrenoceptor and 5-HT1A Receptor-Mediated Electrophysiological Effects on Dorsal Raphe Nucleus and Locus Coeruleus Neurons and Anxiety Behavior in Rat,” Frontiers in Pharmacology 14 (2023): 1183019.
|
| [125] |
Y. Fan, P. Chen, M. U. Raza, et al., “Altered Expression of Phox2 Transcription Factors in the Locus Coeruleus in Major Depressive Disorder Mimicked by Chronic Stress and Corticosterone Treatment in Vivo and in Vitro,” Neuroscience 393 (2018): 123-137.
|
| [126] |
D. Tse, L. Privitera, A. C. Norton, et al., “Cell-Type-Specific Optogenetic Stimulation of the Locus Coeruleus Induces Slow-Onset Potentiation and Enhances Everyday Memory in Rats,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 46 (2023): e2307275120.
|
| [127] |
C. Sagheddu, P. Devoto, S. Aroni, P. Saba, M. Pistis, and G. L. Gessa, “Combined α2- and D2-Receptor Blockade Activates Noradrenergic and Dopaminergic Neurons, but Extracellular Dopamine in the Prefrontal Cortex Is Determined by Uptake and Release From Noradrenergic Terminals,” Frontiers in Pharmacology 14 (2023): 1238115.
|
| [128] |
P. Jovanovic, Y. Wang, J. P. Vit, et al., “Sustained Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons Promotes Dopaminergic Neuron Survival in Synucleinopathy,” PLoS One 17, no. 3 (2022): e0263074.
|
| [129] |
D. C. Matthews, A. Ritter, R. G. Thomas, et al., “Rasagiline Effects on Glucose Metabolism, Cognition, and Tau in Alzheimer's Dementia,” Alzheimer's & Dementia 7, no. 1 (2021): e12106.
|
| [130] |
S.-X. Cao, Y. Zhang, X. Y. Hu, et al., “ErbB4 Deletion in Noradrenergic Neurons in the Locus Coeruleus Induces Mania-Like Behavior via Elevated Catecholamines,” eLife 7 (2018): 7.
|
| [131] |
Y.-P. Xu, X. Y. Cui, Y. T. Liu, S. Y. Cui, and Y. H. Zhang, “Ginsenoside Rg1 Promotes Sleep in Rats by Modulating the Noradrenergic System in the Locus Coeruleus and Serotonergic System in the Dorsal Raphe Nucleus,” Biomedicine & Pharmacotherapy 116 (2019): 109009.
|
| [132] |
Q. Zhang, Y. Xue, K. Wei, et al., “Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF but Not Norepinephrine. Advanced Science,” Advanced Science 11, no. 10 (2024): e2303503.
|
| [133] |
P. Follesa, F. Biggio, G. Gorini, et al., “Vagus Nerve Stimulation Increases Norepinephrine Concentration and the Gene Expression of BDNF and bFGF in the Rat Brain,” Brain Research 1179 (2007): 28-34.
|
| [134] |
R. Fukabori, Y. Iguchi, S. Kato, et al., “Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 40, no. 43 (2020): 8367-8385.
|
| [135] |
H. Antila, I. Kwak, A. Choi, et al., “A Noradrenergic-Hypothalamic Neural Substrate for Stress-Induced Sleep Disturbances,” Proceedings of the National Academy of Sciences of the United States of America 119, no. 45 (2022): e2123528119.
|
| [136] |
J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., “Embryonic Stem Cell Lines Derived From Human Blastocysts,” Science 282, no. 5391 (1998): 1145-1147.
|
| [137] |
K. Takahashi, K. Tanabe, M. Ohnuki, et al., “Induction of Pluripotent Stem Cells From Adult Human Fibroblasts by Defined Factors,” Cell 131, no. 5 (2007): 861-872.
|
| [138] |
D. A. Ogi and S. Jin, “Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine,” Cells 12, no. 10 (2023): 1-4.
|
| [139] |
S. Shrestha, N. C. Anderson, L. B. Grabel, J. R. Naegele, and G. B. Aaron, “Development of Electrophysiological and Morphological Properties of Human Embryonic Stem Cell-Derived GABAergic Interneurons at Different Times After Transplantation Into the Mouse Hippocampus,” PLoS One 15, no. 8 (2020): e0237426.
|
| [140] |
C.-Y. Chang, H. C. Ting, C. A. Liu, et al., “Induced Pluripotent Stem Cell (iPSC)-based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening,” Molecules 25, no. 8 (2020): 2000-2020.
|
| [141] |
Z. Zhang, H. Sheng, L. Liao, et al., “Mesenchymal Stem Cell-Conditioned Medium Improves Mitochondrial Dysfunction and Suppresses Apoptosis in Okadaic Acid-Treated SH-SY5Y Cells by Extracellular Vesicle Mitochondrial Transfer,” Journal of Alzheimer's Disease: JAD 78, no. 3 (2020): 1161-1176.
|
| [142] |
M.-Y. Cha, Y. W. Kwon, H. S. Ahn, et al., “Protein-Induced Pluripotent Stem Cells Ameliorate Cognitive Dysfunction and Reduce Aβ Deposition in a Mouse Model of Alzheimer's Disease,” Stem Cells Translational Medicine 6, no. 1 (2017): 293-305.
|
| [143] |
T. Zhang, W. Ke, X. Zhou, et al., “Human Neural Stem Cells Reinforce Hippocampal Synaptic Network and Rescue Cognitive Deficits in a Mouse Model of Alzheimer's Disease,” Stem Cell Reports 13, no. 6 (2019): 1022-1037.
|
| [144] |
Z.-B. Wang, Z. T. Wang, Y. Sun, L. Tan, and J. T. Yu, “The Future of Stem Cell Therapies of Alzheimer's Disease,” Ageing Research Reviews 80 (2022): 101655.
|
| [145] |
R. van der Kant, V. F. Langness, C. M. Herrera, et al., “Cholesterol Metabolism Is a Druggable Axis That Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons,” Cell Stem Cell 24, no. 3 (2019): 363-375.e9.
|
| [146] |
S. Kriks, J. W. Shim, J. Piao, et al., “Dopamine Neurons Derived From Human ES Cells Efficiently Engraft in Animal Models of Parkinson's Disease,” Nature 480, no. 7378 (2011): 547-551.
|
| [147] |
Z. Chen and G. Zhao, “First-In-Human Transplantation of Autologous Induced Neural Stem Cell-Derived Dopaminergic Precursors to Treat Parkinson's Disease,” Science Bulletin 68, no. 22 (2023): 2700-2703.
|
| [148] |
S. Jiang, H. Wang, C. Yang, et al., “Phase 1 Study of Safety and Preliminary Efficacy of Intranasal Transplantation of Human Neural Stem Cells (ANGE-S003) in Parkinson's Disease,” Journal of Neurology, Neurosurgery, and Psychiatry 95 (2024): 1102-1111.
|
| [149] |
Y. Xin, J. Gao, R. Hu, et al., “Changes of Immune Parameters of T Lymphocytes and Macrophages in EAE Mice After BM-MSCs Transplantation,” Immunology Letters 225 (2020): 66-73.
|
| [150] |
A. Genchi, E. Brambilla, F. Sangalli, et al., “Neural Stem Cell Transplantation in Patients With Progressive Multiple Sclerosis: An Open-Label, Phase 1 Study,” Nature Medicine 29, no. 1 (2023): 75-85.
|
| [151] |
G. Boffa, A. Signori, L. Massacesi, et al., “Hematopoietic Stem Cell Transplantation in People With Active Secondary Progressive Multiple Sclerosis,” Neurology 100, no. 11 (2023): e1109-e1122.
|
| [152] |
O. Lykhmus, L. Koval, L. Voytenko, et al., “Intravenously Injected Mesenchymal Stem Cells Penetrate the Brain and Treat Inflammation-Induced Brain Damage and Memory Impairment in Mice,” Frontiers in Pharmacology 10 (2019): 355.
|
| [153] |
T. Yin, Y. Liu, W. Ji, et al., “Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles: A State-Of-The-Art Multifunctional Weapon Against Alzheimer's Disease,” Theranostics 13, no. 4 (2023): 1264-1285.
|
| [154] |
M. Losurdo, M. Pedrazzoli, C. D'Agostino, et al., “Intranasal Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Exerts Immunomodulatory and Neuroprotective Effects in a 3xTg Model of Alzheimer's Disease,” Stem Cells Translational Medicine 9, no. 9 (2020): 1068-1084.
|
| [155] |
Y. Yoo, G. Neumayer, Y. Shibuya, M. M. D. Mader, and M. Wernig, “A Cell Therapy Approach to Restore Microglial Trem2 Function in a Mouse Model of Alzheimer's Disease,” Cell Stem Cell 30, no. 8 (2023): 1392.
|
| [156] |
A. Kirkeby, J. Nelander, D. B. Hoban, et al., “Preclinical Quality, Safety, and Efficacy of a Human Embryonic Stem Cell-Derived Product for the Treatment of Parkinson's Disease, STEM-PD,” Cell Stem Cell 30, no. 10 (2023): 1299-1314.e9.
|
| [157] |
A. Bose, G. A. Petsko, and L. Studer, “Induced Pluripotent Stem Cells: A Tool for Modeling Parkinson's Disease,” Trends in Neurosciences 45, no. 8 (2022): 608-620.
|
| [158] |
K.-C. Sonntag, B. Song, N. Lee, et al., “Pluripotent Stem Cell-Based Therapy for Parkinson's Disease: Current Status and Future Prospects,” Progress in Neurobiology 168 (2018): 1-20.
|
| [159] |
M. Parmar, S. Grealish, and C. Henchcliffe, “The Future of Stem Cell Therapies for Parkinson Disease,” Nature Reviews. Neuroscience 21, no. 2 (2020): 103-115.
|
| [160] |
T.-Y. Park, J. Jeon, N. Lee, et al., “Co-Transplantation of Autologous Treg Cells in a Cell Therapy for Parkinson's Disease,” Nature 619, no. 7970 (2023): 606-615.
|
| [161] |
T. W. Kim, S. Y. Koo, M. Riessland, et al., “TNF-NF-κB-p53 Axis Restricts In Vivo Survival of hPSC-Derived Dopamine Neurons,” Cell 187 (2024): 3671-3689.e23.
|
| [162] |
Y. Tao, S. C. Vermilyea, M. Zammit, et al., “Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys,” Nature Medicine 27, no. 4 (2021): 632-639.
|
| [163] |
J. S. Schweitzer, B. Song, T. M. Herrington, et al., “Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease,” New England Journal of Medicine 382, no. 20 (2020): 1926-1932.
|
| [164] |
P. Xu, H. He, Q. Gao, et al., “Human Midbrain Dopaminergic Neuronal Differentiation Markers Predict Cell Therapy Outcomes in a Parkinson's Disease Model,” Journal of Clinical Investigation 132, no. 14 (2022): e156768.
|
| [165] |
W. Dong, S. Liu, S. Li, and Z. Wang, “Cell Reprogramming Therapy for Parkinson's Disease,” Neural Regeneration Research 19, no. 11 (2024): 2444-2455.
|
| [166] |
P. Pinjala, K. P. Tryphena, R. Prasad, et al., “CRISPR/Cas9 Assisted Stem Cell Therapy in Parkinson's Disease,” Biomaterials Research 27, no. 1 (2023): 46.
|
| [167] |
J. S. Graves, K. M. Krysko, L. H. Hua, M. Absinta, R. J. M. Franklin, and B. M. Segal, “Ageing and Multiple Sclerosis,” Lancet Neurology 22, no. 1 (2023): 66-77.
|
| [168] |
T. Kalincik, S. Sharmin, I. Roos, et al., “Comparative Effectiveness of Autologous Hematopoietic Stem Cell Transplant vs Fingolimod, Natalizumab, and Ocrelizumab in Highly Active Relapsing-Remitting Multiple Sclerosis,” JAMA Neurology 80, no. 7 (2023): 702-713.
|
| [169] |
L. Feng, J. Chao, P. Ye, et al., “Developing Hypoimmunogenic Human iPSC-Derived Oligodendrocyte Progenitor Cells as an off-The-Shelf Cell Therapy for Myelin Disorders,” Advanced Science 10, no. 23 (2023): e2206910.
|
| [170] |
Z. Wang, L. Zhang, Y. Yang, et al., “Oligodendrocyte Progenitor Cell Transplantation Ameliorates Preterm Infant Cerebral White Matter Injury in Rats Model,” Neuropsychiatric Disease and Treatment 19 (2023): 1935-1947.
|
| [171] |
J. Xu, J. Zhao, R. Wang, et al., “Shh and Olig2 Sequentially Regulate Oligodendrocyte Differentiation From hiPSCs for the Treatment of Ischemic Stroke,” Theranostics 12, no. 7 (2022): 3131-3149.
|
| [172] |
V. Fossati, L. Peruzzotti-Jametti, and S. Pluchino, “A neural stem-cell treatment for progressive multiple sclerosis,” Nature Medicine 29, no. 1 (2023): 27-28.
|
| [173] |
J. A. Smith, A. M. Nicaise, R. B. Ionescu, R. Hamel, L. Peruzzotti-Jametti, and S. Pluchino, “Stem Cell Therapies for Progressive Multiple Sclerosis,” Frontiers in Cell and Developmental Biology 9 (2021): 696434.
|
| [174] |
S. Ramalingam and A. Shah, “Stem Cell Therapy as a Treatment for Autoimmune Disease-Updates in Lupus, Scleroderma, and Multiple Sclerosis,” Current Allergy and Asthma Reports 21, no. 3 (2021): 22.
|
| [175] |
P. Aroca, B. Lorente-Cánovas, F. R. Mateos, and L. Puelles, “Locus Coeruleus Neurons Originate in Alar Rhombomere 1 and Migrate Into the Basal Plate: Studies in Chick and Mouse Embryos,” Journal of Comparative Neurology 496, no. 6 (2006): 802-818.
|
| [176] |
C. Watson, T. Shimogori, and L. Puelles, “Mouse Fgf8-Cre-LacZ Lineage Analysis Defines the Territory of the Postnatal Mammalian Isthmus,” Journal of Comparative Neurology 525, no. 12 (2017): 2782-2799.
|
| [177] |
A. A. Stepanenko and V. M. Kavsan, “Immortalization and Malignant Transformation of Eukaryotic Cells,” Tsitologiia i Genetika 46, no. 2 (2012): 36-75.
|
| [178] |
L. Panman, E. Andersson, Z. Alekseenko, et al., “Transcription Factor-Induced Lineage Selection of Stem-Cell-Derived Neural Progenitor Cells,” Cell Stem Cell 8, no. 6 (2011): 663-675.
|
| [179] |
J. Mong, L. Panman, Z. Alekseenko, et al., “Transcription Factor-Induced Lineage Programming of Noradrenaline and Motor Neurons From Embryonic Stem Cells,” Stem Cells 32, no. 3 (2014): 609-622.
|
| [180] |
P. C. Holm, F. J. Rodríguez, J. Kele, G. Castelo-Branco, J. Kitajewski, and E. Arenas, “BMPs, FGF8 and Wnts Regulate the Differentiation of Locus Coeruleus Noradrenergic Neuronal Precursors,” Journal of Neurochemistry 99, no. 1 (2006): 343-352.
|
| [181] |
Y. Tao, X. Li, Q. Dong, et al., “Generation of Locus Coeruleus Norepinephrine Neurons From Human Pluripotent Stem Cells,” Nature Biotechnology 42 (2023): 1404-1416.
|
| [182] |
P. Choudhary, A. G. Pacholko, J. Palaschuk, and L. K. Bekar, “The Locus Coeruleus Neurotoxin, DSP4, and/or a High Sugar Diet Induce Behavioral and Biochemical Alterations in Wild-Type Mice Consistent With Alzheimers Related Pathology,” Metabolic Brain Disease 33, no. 5 (2018): 1563-1571.
|
| [183] |
M. Xiong, Y. Tao, Q. Gao, et al., “Human Stem Cell-Derived Neurons Repair Circuits and Restore Neural Function,” Cell Stem Cell 28, no. 1 (2021): 112-126.e6.
|
| [184] |
T. J. Collier, D. M. Gash, and J. R. Sladek, “Transplantation of Norepinephrine Neurons Into Aged Rats Improves Performance of a Learned Task,” Brain Research 448, no. 1 (1988): 77-87.
|
| [185] |
E. M. Quintero, L. M. Willis, V. Zaman, et al., “Glial Cell Line-Derived Neurotrophic Factor Is Essential for Neuronal Survival in the Locus Coeruleus-Hippocampal Noradrenergic Pathway,” Neuroscience 124, no. 1 (2004): 137-146.
|
| [186] |
N. W. Plummer, E. L. Scappini, K. G. Smith, C. J. Tucker, and P. Jensen, “Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7,” Frontiers in Neuroanatomy 11 (2017): 60.
|
| [187] |
Y. Tao and S.-C. Zhang, “Neural Subtype Specification From Human Pluripotent Stem Cells,” Cell Stem Cell 19, no. 5 (2016): 573-586.
|
| [188] |
S. Ghosh and J. H. R. Maunsell, “Locus Coeruleus Norepinephrine Contributes to Visual-Spatial Attention by Selectively Enhancing Perceptual Sensitivity,” Neuron 112, no. 13 (2024): 2231-2240.e5.
|
| [189] |
B. L. Tang, “Axon Regeneration Induced by Environmental Enrichment- Epigenetic Mechanisms,” Neural Regeneration Research 15, no. 1 (2020): 10-15.
|
| [190] |
A. M. Fortress, E. D. Hamlett, E. M. Vazey, et al., “Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 35, no. 4 (2015): 1343-1353.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.