Organoids in Haematologic Research: Advances and Future Directions

Liangzheng Chang , Lu Li , Yuling Han , Hui Cheng , Liuliu Yang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e13806

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e13806 DOI: 10.1111/cpr.13806
REVIEW

Organoids in Haematologic Research: Advances and Future Directions

Author information +
History +
PDF

Abstract

Organoid technology, as a revolutionary biomedical tool, has shown immense potential in haematological research in recent years. By using three-dimensional (3D) cell culture systems constructed from pluripotent stem cells (PSCs) or adult stem cells (ASCs), organoids can highly mimic the characteristics of in vivo organs, thereby offering significant potential for investigating human organ development, disease processes and treatment strategies. This review introduces the development of organoids and focuses on their progress in haematological research, including haematopoietic-related organoids, immune-related organoids and organoids used for studying blood system diseases. It discusses the prospects, challenges and future outlook of organoids in the field of haematology. This review aims to provide the latest advancements and future directions of organoid technology in haematological research, offering references and insights into further exploration in this field.

Cite this article

Download citation ▾
Liangzheng Chang, Lu Li, Yuling Han, Hui Cheng, Liuliu Yang. Organoids in Haematologic Research: Advances and Future Directions. Cell Proliferation, 2025, 58(6): e13806 DOI:10.1111/cpr.13806

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Han, C. Cai, W. Deng, et al., “Landscape of Human Organoids: Ideal Model in Clinics and Research,” Innovation (Cambridge (Mass.)) 5, no. 3 (2024): 100620.

[2]

H. Jian, X. Li, Q. Dong, et al., “In Vitro Construction of Liver Organoids With Biomimetic Lobule Structure by a Multicellular 3D Bioprinting Strategy,” Cell Proliferation 56, no. 5 (2023): e13465.

[3]

S. Huang, F. Huang, H. Zhang, et al., “In Vivo Development and Single-Cell Transcriptome Profiling of Human Brain Organoids,” Cell Proliferation 55, no. 3 (2022): e13201.

[4]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12926.

[5]

X. Y. Tang, S. Wu, D. Wang, et al., “Human Organoids in Basic Research and Clinical Applications,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 168.

[6]

J. Kim, B. K. Koo, and J. A. Knoblich, “Human Organoids: Model Systems for Human Biology and Medicine,” Nature Reviews. Molecular Cell Biology 21, no. 10 (2020): 571-584.

[7]

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The Third Dimension Bridges the Gap Between Cell Culture and Live Tissue,” Nature Reviews. Molecular Cell Biology 8, no. 10 (2007): 839-845.

[8]

N. B. Robinson, K. Krieger, F. M. Khan, et al., “The Current State of Animal Models in Research: A Review,” International Journal of Surgery 72 (2019): 9-13.

[9]

H. Xu, X. Lyu, M. Yi, et al., “Organoid Technology and Applications in Cancer Research,” Journal of Hematology & Oncology 11, no. 1 (2018): 116.

[10]

Z. Zhao, X. Chen, A. M. Dowbaj, et al., “Organoids,” Nature Reviews Methods Primers 2 (2022): 94.

[11]

H. M. Kim, S.-H. Lee, J. Lim, et al., “The Epidermal Growth Factor Receptor Variant Type III Mutation Frequently Found in Gliomas Induces Astrogenesis in Human Cerebral Organoids,” Cell Proliferation 54, no. 2 (2021): e12965.

[12]

Y. Zhang, J. Wei, J. Cao, et al., “Requirements for Human-Induced Pluripotent Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13182.

[13]

J. Hao, J. Cao, L. Wang, et al., “Requirements for Human Embryonic Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12925.

[14]

J. Lee, S. Kotliarova, Y. Kotliarov, et al., “Tumor Stem Cells Derived From Glioblastomas Cultured in bFGF and EGF More Closely Mirror the Phenotype and Genotype of Primary Tumors Than Do Serum-Cultured Cell Lines,” Cancer Cell 9, no. 5 (2006): 391-403.

[15]

C. Corro, L. Novellasdemunt, and V. S. W. Li, “A Brief History of Organoids,” American Journal of Physiology. Cell Physiology 319, no. 1 (2020): C151-C165.

[16]

H. V. Wilson, “A New Method by Which Sponges May be Artificially Reared,” Science 25, no. 649 (1907): 912-915.

[17]

P. Weiss and A. C. Taylor, “Reconstitution of Complete Organs From Single-Cell Suspensions of Chick Embryos in Advanced Stages of Differentiation,” Proceedings of the National Academy of Sciences of the United States of America 46, no. 9 (1960): 1177-1185.

[18]

A. M. Wobus, H. Holzhausen, P. Jäkel, et al., “Characterization of a Pluripotent Stem Cell Line Derived From a Mouse Embryo,” Experimental Cell Research 152, no. 1 (1984): 212-219.

[19]

M. L. Li, D. A. Farson, J. Aggeler, et al., “Influence of a Reconstituted Basement Membrane and Its Components on Casein Gene Expression and Secretion in Mouse Mammary Epithelial Cells,” Proceedings of the National Academy of Sciences of the United States of America 84, no. 1 (1987): 136-140.

[20]

J. M. Shannon, R. J. Mason, and S. D. Jennings, “Functional Differentiation of Alveolar Type II Epithelial Cells In Vitro: Effects of Cell Shape, Cell-Matrix Interactions and Cell-Cell Interactions,” Biochimica et Biophysica Acta 931, no. 2 (1987): 143-156.

[21]

J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, and M. A. Waknitz, “Embryonic Stem Cell Lines Derived From Human Blastocysts,” Science 282, no. 5391 (1998): 1145-1147.

[22]

M. Eiraku, K. Watanabe, M. Matsuo-Takasaki, et al., “Self-Organized Formation of Polarized Cortical Tissues From ESCs and Its Active Manipulation by Extrinsic Signals,” Cell Stem Cell 3, no. 5 (2008): 519-532.

[23]

T. Sato, J. H. van Es, H. J. Snippert, et al., “Paneth Cells Constitute the Niche for Lgr5 Stem Cells in Intestinal Crypts,” Nature 469, no. 7330 (2011): 415-418.

[24]

T. Sato, R. G. Vries, H. J. Snippert, et al., “Single Lgr5 Stem Cells Build Crypt-Villus Structures In Vitro Without a Mesenchymal Niche,” Nature 459, no. 7244 (2009): 262-265.

[25]

A. Taguchi, Y. Kaku, T. Ohmori, et al., “Redefining the In Vivo Origin of Metanephric Nephron Progenitors Enables Generation of Complex Kidney Structures From Pluripotent Stem Cells,” Cell Stem Cell 14, no. 1 (2014): 53-67.

[26]

D. Vyas, P. M. Baptista, M. Brovold, et al., “Self-Assembled Liver Organoids Recapitulate Hepatobiliary Organogenesis In Vitro,” Hepatology 67, no. 2 (2018): 750-761.

[27]

A. J. Miller, B. R. Dye, D. Ferrer-Torres, et al., “Generation of Lung Organoids From Human Pluripotent Stem Cells In Vitro,” Nature Protocols 14, no. 2 (2019): 518-540.

[28]

L. Zhang, Y. He, L. Dong, et al., “Perturbation of Intestinal Stem Cell Homeostasis and Radiation Enteritis Recovery via Dietary Titanium Dioxide Nanoparticles,” Cell Proliferation 56, no. 8 (2023): e13427.

[29]

E. Di Lullo and A. R. Kriegstein, “The Use of Brain Organoids to Investigate Neural Development and Disease,” Nature Reviews. Neuroscience 18, no. 10 (2017): 573-584.

[30]

C. W. Chua, M. Shibata, M. Lei, et al., “Single Luminal Epithelial Progenitors Can Generate Prostate Organoids in Culture,” Nature Cell Biology 16, no. 10 (2014): 951-961.

[31]

K. Liu, N. Jing, D. Wang, et al., “A Novel Mouse Model for Liver Metastasis of Prostate Cancer Reveals Dynamic Tumour-Immune Cell Communication,” Cell Proliferation 54, no. 7 (2021): e13056.

[32]

B. Ahammed and S. K. Kalangi, “A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology,” ACS Omega 9, no. 28 (2024): 30087-30096.

[33]

H. Clevers, “Modeling Development and Disease With Organoids,” Cell 165, no. 7 (2016): 1586-1597.

[34]

M. Chen, X. Mao, D. Huang, et al., “Somatostatin Signalling Promotes the Differentiation of Rod Photoreceptors in Human Pluripotent Stem Cell-Derived Retinal Organoid,” Cell Proliferation 55, no. 7 (2022): e13254.

[35]

T. Nakano, S. Ando, N. Takata, et al., “Self-Formation of Optic Cups and Storable Stratified Neural Retina From Human ESCs,” Cell Stem Cell 10, no. 6 (2012): 771-785.

[36]

C. E. Barkauskas, M. J. Cronce, C. R. Rackley, et al., “Type 2 Alveolar Cells are Stem Cells in Adult Lung,” Journal of Clinical Investigation 123, no. 7 (2013): 3025-3036.

[37]

H. Sakaguchi, T. Kadoshima, M. Soen, et al., “Generation of Functional Hippocampal Neurons From Self-Organizing Human Embryonic Stem Cell-Derived Dorsomedial Telencephalic Tissue,” Nature Communications 6 (2015): 8896.

[38]

J. R. Linnemann, H. Miura, L. K. Meixner, et al., “Quantification of Regenerative Potential in Primary Human Mammary Epithelial Cells,” Development 142, no. 18 (2015): 3239-3251.

[39]

M. Kessler, K. Hoffmann, V. Brinkmann, et al., “The Notch and Wnt Pathways Regulate Stemness and Differentiation in Human Fallopian Tube Organoids,” Nature Communications 6 (2015): 8989.

[40]

H. Stower, “Snake Venom-Producing Organoids,” Nature Medicine 26, no. 2 (2020): 163.

[41]

A. O. Khan, A. Rodriguez-Romera, J. S. Reyat, et al., “Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies,” Cancer Discovery 13, no. 2 (2023): 364-385.

[42]

A. A. Olijnik, A. Rodriguez-Romera, Z. C. Wong, et al., “Generating Human Bone Marrow Organoids for Disease Modeling and Drug Discovery,” Nature Protocols 19, no. 7 (2024): 2117-2146.

[43]

A. Tormin, J. C. Brune, S. Walsh, et al., “CD146 Expression on Primary Nonhematopoietic Bone Marrow Stem Cells Is Correlated With In Situ Localization,” Blood 117, no. 19 (2011): 5067-5077.

[44]

K. Sayo, S. Aoki, and N. Kojima, “Fabrication of Bone Marrow-Like Tissue In Vitro From Dispersed-State Bone Marrow Cells,” Regenerative Therapy 3 (2016): 32-37.

[45]

“Using Stem Cells to Model the Human Bone Marrow in a Dish,” Nature Methods 21, no. 5 (2024): 762-763.

[46]

S. Frenz-Wiessner, S. D. Fairley, M. Buser, et al., “Generation of Complex Bone Marrow Organoids From Human Induced Pluripotent Stem Cells,” Nature Methods 21, no. 5 (2024): 868-881.

[47]

T. He, B. Zhou, G. Sun, et al., “The Bone-Liver Interaction Modulates Immune and Hematopoietic Function Through Pinch-Cxcl12-Mbl2 Pathway,” Cell Death and Differentiation 31, no. 1 (2024): 90-105.

[48]

A. Giancotti, M. Monti, L. Nevi, et al., “Functions and the Emerging Role of the Foetal Liver Into Regenerative Medicine,” Cells 8, no. 8 (2019): 914.

[49]

S. M. Hattangadi, P. Wong, L. Zhang, et al., “From Stem Cell to Red Cell: Regulation of Erythropoiesis at Multiple Levels by Multiple Proteins, RNAs, and Chromatin Modifications,” Blood 118, no. 24 (2011): 6258-6268.

[50]

D. Hendriks, B. Artegiani, H. Hu, et al., “Establishment of Human Fetal Hepatocyte Organoids and CRISPR-Cas9-Based Gene Knockin and Knockout in Organoid Cultures From Human Liver,” Nature Protocols 16, no. 1 (2021): 182-217.

[51]

S. J. Mun, J. S. Ryu, M. O. Lee, et al., “Generation of Expandable Human Pluripotent Stem Cell-Derived Hepatocyte-Like Liver Organoids,” Journal of Hepatology 71, no. 5 (2019): 970-985.

[52]

X. Xu, S. Jiang, L. Gu, et al., “High-Throughput Bioengineering of Homogenous and Functional Human-Induced Pluripotent Stem Cells-Derived Liver Organoids via Micropatterning Technique,” Frontiers in Bioengineering and Biotechnology 10 (2022): 937595.

[53]

Y. Weng, S. Han, M. T. Sekyi, et al., “Self-Assembled Matrigel-Free iPSC-Derived Liver Organoids Demonstrate Wide-Ranging Highly Differentiated Liver Functions,” Stem Cells 41, no. 2 (2023): 126-139.

[54]

M. Ackermann, F. Saleh, S. M. Abdin, et al., “Standardized Generation of Human iPSC-Derived Hematopoietic Organoids and Macrophages Utilizing a Benchtop Bioreactor Platform Under Fully Defined Conditions,” Stem Cell Research & Therapy 15, no. 1 (2024): 171.

[55]

K. Chen, Y. Li, X. Wu, et al., “Establishment of Human Hematopoietic Organoids for Evaluation of Hematopoietic Injury and Regeneration Effect,” Stem Cell Research & Therapy 15, no. 1 (2024): 133.

[56]

K. Gee, M. A. Isani, A. Fode, et al., “Spleen Organoid Units Generate Functional Human and Mouse Tissue-Engineered Spleen in a Murine Model,” Tissue Engineering. Part A 26, no. 7-8 (2020): 411-418.

[57]

C. Robin, K. Bollerot, S. Mendes, et al., “Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells Throughout Development,” Cell Stem Cell 5, no. 4 (2009): 385-395.

[58]

E. Oberlin, M. Fleury, D. Clay, et al., “VE-Cadherin Expression Allows Identification of a New Class of Hematopoietic Stem Cells Within Human Embryonic Liver,” Blood 116, no. 22 (2010): 4444-4455.

[59]

M. H. Baron, J. Isern, and S. T. Fraser, “The Embryonic Origins of Erythropoiesis in Mammals,” Blood 119, no. 21 (2012): 4828-4837.

[60]

E. Dzierzak and S. Philipsen, “Erythropoiesis: Development and Differentiation,” Cold Spring Harbor Perspectives in Medicine 3, no. 4 (2013): a011601.

[61]

K. E. McGrath, J. M. Frame, and J. Palis, “Early Hematopoiesis and Macrophage Development,” Seminars in Immunology 27, no. 6 (2015): 379-387.

[62]

J. E. Mold, S. Venkatasubrahmanyam, T. D. Burt, et al., “Fetal and Adult Hematopoietic Stem Cells Give Rise to Distinct T Cell Lineages in Humans,” Science 330, no. 6011 (2010): 1695-1699.

[63]

K. Cui, T. Chen, Y. Zhu, et al., “Engineering Placenta-Like Organoids Containing Endogenous Vascular Cells From Human-Induced Pluripotent Stem Cells,” Bioengineering & Translational Medicine 8, no. 1 (2023): e10390.

[64]

L. Huang, Z. Tu, L. Wei, et al., “Generating Functional Multicellular Organoids From Human Placenta Villi,” Advanced Science 10, no. 26 (2023): e2301565.

[65]

M. A. Sheridan, R. C. Fernando, L. Gardner, et al., “Establishment and Differentiation of Long-Term Trophoblast Organoid Cultures From the Human Placenta,” Nature Protocols 15, no. 10 (2020): 3441-3463.

[66]

M. J. Shannon, M. N. GL, B. Koksal, et al., “Single-Cell Assessment of Primary and Stem Cell-Derived Human Trophoblast Organoids as Placenta-Modeling Platforms,” Developmental Cell 59, no. 6 (2024): 776-792 e11.

[67]

S. Haider, G. Meinhardt, L. Saleh, et al., “Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta,” Stem Cell Reports 11, no. 2 (2018): 537-551.

[68]

R. M. Karvas, S. A. Khan, S. Verma, et al., “Stem-Cell-Derived Trophoblast Organoids Model Human Placental Development and Susceptibility to Emerging Pathogens,” Cell Stem Cell 29, no. 5 (2022): 810-825 e8.

[69]

M. Y. Turco, L. Gardner, R. G. Kay, et al., “Trophoblast Organoids as a Model for Maternal-Fetal Interactions During Human Placentation,” Nature 564, no. 7735 (2018): 263-267.

[70]

L. Yang, P. Liang, H. Yang, et al., “Trophoblast Organoids With Physiological Polarity Model Placental Structure and Function,” Journal of Cell Science 137, no. 5 (2024): jcs261528.

[71]

T. Hori, H. Okae, S. Shibata, et al., “Trophoblast Stem Cell-Based Organoid Models of the Human Placental Barrier,” Nature Communications 15, no. 1 (2024): 962.

[72]

Q. Mao, Q. Ye, Y. Xu, et al., “Murine Trophoblast Organoids as a Model for Trophoblast Development and CRISPR-Cas9 Screening,” Developmental Cell 58, no. 24 (2023): 2992-3008 e7.

[73]

Y. Birger, L. Goldberg, T. M. Chlon, et al., “Perturbation of Fetal Hematopoiesis in a Mouse Model of Down Syndrome's Transient Myeloproliferative Disorder,” Blood 122, no. 6 (2013): 988-998.

[74]

C. D. Allen and J. G. Cyster, “Follicular Dendritic Cell Networks of Primary Follicles and Germinal Centers: Phenotype and Function,” Seminars in Immunology 20, no. 1 (2008): 14-25.

[75]

R. Forster, A. C. Davalos-Misslitz, and A. Rot, “CCR7 and Its Ligands: Balancing Immunity and Tolerance,” Nature Reviews. Immunology 8, no. 5 (2008): 362-371.

[76]

M. Bajenoff, J. G. Egen, L. Y. Koo, et al., “Stromal Cell Networks Regulate Lymphocyte Entry, Migration, and Territoriality in Lymph Nodes,” Immunity 25, no. 6 (2006): 989-1001.

[77]

S. Suematsu and T. Watanabe, “Generation of a Synthetic Lymphoid Tissue-Like Organoid in Mice,” Nature Biotechnology 22, no. 12 (2004): 1539-1545.

[78]

C. Giese, A. Lubitz, C. D. Demmler, et al., “Immunological Substance Testing on Human Lymphatic Micro-Organoids In Vitro,” Journal of Biotechnology 148, no. 1 (2010): 38-45.

[79]

W. Ye, C. Luo, C. Li, et al., “Organoids to Study Immune Functions, Immunological Diseases and Immunotherapy,” Cancer Letters 477 (2020): 31-40.

[80]

X. Wang, X. Li, J. Zhao, et al., “Rapid Generation of HPSC-Derived High Endothelial Venule Organoids With in Vivo Ectopic Lymphoid Tissue Capabilities,” Advanced Materials 36, no. 15 (2024): e2308760.

[81]

N. I. Chalisova, V. A. Penniyainen, N. V. Kharitonova, et al., “The Dynamics of Stimulating and Inhibiting Influence on Organoid Cultures of Nervous and Lymphoid Tissues,” Doklady Biological Sciences 380 (2001): 424-426.

[82]

E. Lenti, S. Bianchessi, S. T. Proulx, et al., “Therapeutic Regeneration of Lymphatic and Immune Cell Functions Upon Lympho-Organoid Transplantation,” Stem Cell Reports 12, no. 6 (2019): 1260-1268.

[83]

H. T. Petrie and J. C. Zuniga-Pflucker, “Zoned out: Functional Mapping of Stromal Signaling Microenvironments in the Thymus,” Annual Review of Immunology 25 (2007): 649-679.

[84]

S. E. Prockop, S. Palencia, C. M. Ryan, et al., “Stromal Cells Provide the Matrix for Migration of Early Lymphoid Progenitors Through the Thymic Cortex,” Journal of Immunology 169, no. 8 (2002): 4354-4361.

[85]

L. Calderon and T. Boehm, “Three Chemokine Receptors Cooperatively Regulate Homing of Hematopoietic Progenitors to the Embryonic Mouse Thymus,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 18 (2011): 7517-7522.

[86]

W. E. Jenkinson, S. W. Rossi, S. M. Parnell, et al., “PDGFRalpha-Expressing Mesenchyme Regulates Thymus Growth and the Availability of Intrathymic Niches,” Blood 109, no. 3 (2007): 954-960.

[87]

D. D. Taub and D. L. Longo, “Insights Into Thymic Aging and Regeneration,” Immunological Reviews 205 (2005): 72-93.

[88]

A. V. Griffith, M. Fallahi, T. Venables, et al., “Persistent Degenerative Changes in Thymic Organ Function Revealed by an Inducible Model of Organ Regrowth,” Aging Cell 11, no. 1 (2012): 169-177.

[89]

M. Bosticardo, F. Pala, E. Calzoni, et al., “Artificial Thymic Organoids Represent a Reliable Tool to Study T-Cell Differentiation in Patients With Severe T-Cell Lymphopenia,” Blood Advances 4, no. 12 (2020): 2611-2616.

[90]

A. Zeleniak, C. Wiegand, W. Liu, et al., “De Novo Construction of T Cell Compartment in Humanized Mice Engrafted With iPSC-Derived Thymus Organoids,” Nature Methods 19, no. 10 (2022): 1306-1319.

[91]

S. Lim, G. J. van Son, N. L. Yanti, et al., “Derivation of Functional Thymic Epithelial Organoid Lines From Adult Murine Thymus,” Cell Reports 43, no. 4 (2024): 114019.

[92]

M. C. Poznansky, R. H. Evans, R. B. Foxall, et al., “Efficient Generation of Human T Cells From a Tissue-Engineered Thymic Organoid,” Nature Biotechnology 18, no. 7 (2000): 729-734.

[93]

C. L. Gardner, M. Pavel-Dinu, K. Dobbs, et al., “Gene Editing Rescues in Vitro T Cell Development of RAG2-Deficient Induced Pluripotent Stem Cells in an Artificial Thymic Organoid System,” Journal of Clinical Immunology 41, no. 5 (2021): 852-862.

[94]

S. A. Ramos, L. H. Armitage, J. J. Morton, et al., “Generation of Functional Thymic Organoids From Human Pluripotent Stem Cells,” Stem Cell Reports 18, no. 4 (2023): 829-840.

[95]

C. S. Seet, C. He, M. T. Bethune, et al., “Generation of Mature T Cells From Human Hematopoietic Stem and Progenitor Cells in Artificial Thymic Organoids,” Nature Methods 14, no. 5 (2017): 521-530.

[96]

M. Hun, M. Barsanti, K. Wong, et al., “Native Thymic Extracellular Matrix Improves In Vivo Thymic Organoid T Cell Output, and Drives In Vitro Thymic Epithelial Cell Differentiation,” Biomaterials 118 (2017): 1-15.

[97]

A. Chhatta, H. M. Mikkers, and F. J. Staal, “Strategies for Thymus Regeneration and Generating Thymic Organoids,” Journal of Immunology and Regenerative Medicine 14 (2021): 100052.

[98]

A. Tajima, I. Pradhan, M. Trucco, et al., “Restoration of Thymus Function With Bioengineered Thymus Organoids,” Current Stem Cell Reports 2, no. 2 (2016): 128-139.

[99]

N. Bredenkamp, S. Ulyanchenko, K. E. O'Neill, et al., “An Organized and Functional Thymus Generated From FOXN1-Reprogrammed Fibroblasts,” Nature Cell Biology 16, no. 9 (2014): 902-908.

[100]

Y. F. Tian, H. Ahn, R. S. Schneider, et al., “Integrin-Specific Hydrogels as Adaptable Tumor Organoids for Malignant B and T Cells,” Biomaterials 73 (2015): 110-119.

[101]

L. S. Britto, D. Balasubramani, S. Desai, et al., “T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas Through H3K9me3 Modifications,” Advanced Healthcare Materials (2024): e2401192. https://doi.org/10.1002/adhm.202401192.

[102]

S. B. Shah, C. R. Carlson, K. Lai, et al., “Combinatorial Treatment Rescues Tumour-Microenvironment-Mediated Attenuation of MALT1 Inhibitors in B-Cell Lymphomas,” Nature Materials 22, no. 4 (2023): 511-523.

[103]

A. Vidal-Crespo, L. Pedrosa, I. Fernández-Miranda, et al., “Daratumumab Displays In Vitro and In Vivo Anti-Tumor Activity in Models of B-Cell Non-Hodgkin Lymphoma and Improves Responses to Standard Chemo-Immunotherapy Regimens,” Haematologica 105, no. 4 (2020): 1032-1041.

[104]

J. M. Kastenschmidt, J. G. Schroers-Martin, B. J. Sworder, et al., “A Human Lymphoma Organoid Model for Evaluating and Targeting the Follicular Lymphoma Tumor Immune Microenvironment,” Cell Stem Cell 31, no. 3 (2024): 410-420.

[105]

C. Faria, F. Gava, P. Gravelle, et al., “Patient-Derived Lymphoma Spheroids Integrating Immune Tumor Microenvironment as Preclinical Follicular Lymphoma Models for Personalized Medicine,” Journal for Immunotherapy of Cancer 11, no. 10 (2023): e007156.

[106]

C. Rodriguez, “An Overview of Organoid and 3-Dimensional Models in Multiple Myeloma,” Cancer Journal 27, no. 3 (2021): 239-246.

[107]

M. Z. Jin and W. L. Jin, “The Updated Landscape of Tumor Microenvironment and Drug Repurposing,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 166.

[108]

X. Wei, M. N. Calvo-Vidal, S. Chen, et al., “Germline Lysine-Specific Demethylase 1 (LSD1/KDM1A) Mutations Confer Susceptibility to Multiple Myeloma,” Cancer Research 78, no. 10 (2018): 2747-2759.

[109]

P. Gebing, S. Loizou, S. Hänsch, et al., “A Brain Organoid/ALL Co-Culture Model Reveals the AP-1 Pathway as Critically Associated With CNS Involvement of BCP-ALL.” 2024, Blood Advances.

[110]

A. de Janon, A. Mantalaris, and N. Panoskaltsis, “Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis,” Journal of Immunology 210, no. 7 (2023): 895-904.

[111]

M. Derecka and J. D. Crispino, “Bone Marrow Avatars: Mimicking Hematopoiesis in a Dish,” Cancer Discovery 13, no. 2 (2023): 263-265.

[112]

E. Lara-Gonzalez, O. Wittig, D. Diaz-Solano, et al., “3D Organoid Modeling of Extramedullary Hematopoiesis,” International Journal of Artificial Organs 46, no. 1 (2023): 29-39.

[113]

K. Yamamoto, Y. Miwa, S. Abe Suzuki, et al., “Extramedullary Hematopoiesis: Elucidating the Function of the Hematopoietic Stem Cell Niche (Review),” Molecular Medicine Reports 13, no. 1 (2016): 587-591.

[114]

V. Iefremova, G. Manikakis, O. Krefft, et al., “An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome,” Cell Reports 19, no. 1 (2017): 50-59.

[115]

A. Turhan, A. Foudi, J. W. Hwang, et al., “Modeling Malignancies Using Induced Pluripotent Stem Cells: From Chronic Myeloid Leukemia to Hereditary Cancers,” Experimental Hematology 71 (2019): 61-67.

[116]

S. Doulatov, F. Notta, E. Laurenti, et al., “Hematopoiesis: A Human Perspective,” Cell Stem Cell 10, no. 2 (2012): 120-136.

[117]

C. D. Porada, A. J. Atala, and G. Almeida-Porada, “The Hematopoietic System in the Context of Regenerative Medicine,” Methods 99 (2016): 44-61.

[118]

M. Biermann and T. Reya, “Hematopoietic Stem Cells and Regeneration,” Cold Spring Harbor Perspectives in Biology 14 (2022): a040774.

[119]

C. T. Charlesworth, I. Hsu, A. C. Wilkinson, et al., “Immunological Barriers to Haematopoietic Stem Cell Gene Therapy,” Nature Reviews. Immunology 22, no. 12 (2022): 719-733.

[120]

A. Motazedian, F. F. Bruveris, S. V. Kumar, et al., “Multipotent RAG1+ Progenitors Emerge Directly From Haemogenic Endothelium in Human Pluripotent Stem Cell-Derived Haematopoietic Organoids,” Nature Cell Biology 22, no. 1 (2020): 60-73.

[121]

S. Demirci, J. J. Haro-Mora, A. Leonard, et al., “Definitive Hematopoietic Stem/Progenitor Cells From Human Embryonic Stem Cells Through Serum/Feeder-Free Organoid-Induced Differentiation,” Stem Cell Research & Therapy 11, no. 1 (2020): 493.

[122]

N. Tamaoki, S. Siebert, T. Maeda, et al., “Self-Organized Yolk Sac-Like Organoids Allow for Scalable Generation of Multipotent Hematopoietic Progenitor Cells From Induced Pluripotent Stem Cells,” Cell Reports Methods 3, no. 4 (2023): 100460.

[123]

W. Zhang, X. Wei, Q. Wang, et al., “In Vivo Osteo-Organoid Approach for Harvesting Therapeutic Hematopoietic Stem/Progenitor Cells,” Journal of Visualized Experiments 204 (2024): e66026.

[124]

H. Xu, Y. Jiao, S. Qin, et al., “Organoid Technology in Disease Modelling, Drug Development, Personalized Treatment and Regeneration Medicine,” Experimental Hematology & Oncology 7 (2018): 30.

[125]

Q. Wang, F. Guo, Y. Jin, et al., “Applications of Human Organoids in the Personalized Treatment for Digestive Diseases,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 336.

[126]

K. Kretzschmar, “Cancer Research Using Organoid Technology,” Journal of Molecular Medicine (Berlin, Germany) 99, no. 4 (2021): 501-515.

[127]

Y. R. Lou and A. W. Leung, “Next Generation Organoids for Biomedical Research and Applications,” Biotechnology Advances 36, no. 1 (2018): 132-149.

[128]

R. Cruz-Acuna and A. J. Garcia, “Engineered Materials to Model Human Intestinal Development and Cancer Using Organoids,” Experimental Cell Research 377, no. 1-2 (2019): 109-114.

[129]

M. Hofer and M. P. Lutolf, “Engineering Organoids,” Nature Reviews Materials 6, no. 5 (2021): 402-420.

[130]

D. Tuveson and H. Clevers, “Cancer Modeling Meets Human Organoid Technology,” Science 364, no. 6444 (2019): 952-955.

[131]

G. Rossi, A. Manfrin, and M. P. Lutolf, “Progress and Potential in Organoid Research,” Nature Reviews. Genetics 19, no. 11 (2018): 671-687.

[132]

M. Millard, N. A. Williams, A. K. Elrod, et al., “Abstract 3086: Organoids Standardized to a Clinically Validated Drug Response Assay for Truly Predictive In Vitro Drug Response Profiling,” Cancer Research 82, no. 12_Supplement (2022): 3086.

[133]

M. Verduin, A. Hoeben, D. De Ruysscher, et al., “Patient-Derived Cancer Organoids as Predictors of Treatment Response,” Frontiers in Oncology 11 (2021): 641980.

[134]

M. G. Andrews and A. R. Kriegstein, “Challenges of Organoid Research,” Annual Review of Neuroscience 45 (2022): 23-39.

[135]

J. P. Licata, K. H. Schwab, Y. E. Har-El, et al., “Bioreactor Technologies for Enhanced Organoid Culture,” International Journal of Molecular Sciences 24, no. 14 (2023): 11427.

[136]

H. Cai, Z. Ao, Z. Wu, et al., “Intelligent Acoustofluidics Enabled Mini-Bioreactors for Human Brain Organoids,” Lab on a Chip 21, no. 11 (2021): 2194-2205.

[137]

F. M. Orecchio, V. Tommaso, T. Santaniello, et al., “A Novel Fluidic Platform for Semi-Automated Cell Culture Into Multiwell-Like Bioreactors,” Micromachines (Basel) 13, no. 7 (2022): 994.

[138]

B. Schuster, M. Junkin, S. S. Kashaf, et al., “Automated Microfluidic Platform for Dynamic and Combinatorial Drug Screening of Tumor Organoids,” Nature Communications 11, no. 1 (2020): 5271.

[139]

J. Saleh, B. Mercier, and W. Xi, “Bioengineering Methods for Organoid Systems,” Biology of the Cell 113, no. 12 (2021): 475-491.

[140]

A. Najm, M. Kostine, J. D. Pauling, et al., “Multidisciplinary Collaboration Among Young Specialists: Results of an International Survey by the Emerging EULAR Network and Other Young Organisations,” RMD Open 6, no. 2 (2020): e001398.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/