Genetically Engineered Hypoimmune Human Muscle Progenitor Cells Can Reduce Immune Rejection

Yu Chen , Peng Wang , Shilin Ma , Chenran Yue , Xupeng Liu , Yeqian Cheng , Kun Liu , Tongbiao Zhao , Ng Shyh-Chang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13802

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13802 DOI: 10.1111/cpr.13802
LETTER TO THE EDITOR

Genetically Engineered Hypoimmune Human Muscle Progenitor Cells Can Reduce Immune Rejection

Author information +
History +
PDF

Cite this article

Download citation ▾
Yu Chen, Peng Wang, Shilin Ma, Chenran Yue, Xupeng Liu, Yeqian Cheng, Kun Liu, Tongbiao Zhao, Ng Shyh-Chang. Genetically Engineered Hypoimmune Human Muscle Progenitor Cells Can Reduce Immune Rejection. Cell Proliferation, 2025, 58(4): e13802 DOI:10.1111/cpr.13802

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. C. Brown, M. O. Harhay, and M. N. Harhay, “Sarcopenia and Mortality Among a Population-Based Sample of Community-Dwelling Older Adults,” Journal of Cachexia, Sarcopenia and Muscle 7 (2016): 290-298, https://doi.org/10.1002/jcsm.12073.

[2]

L. Larsson, H. Degens, M. Li, et al., “Sarcopenia: Aging-Related Loss of Muscle Mass and Function,” Physiological Reviews 99 (2019): 427-511, https://doi.org/10.1152/physrev.00061.2017.

[3]

P. Wiedmer, T. Jung, J. P. Castro, et al., “Sarcopenia—Molecular Mechanisms and Open Questions,” Ageing Research Reviews 65 (2021): 101200, https://doi.org/10.1016/j.arr.2020.101200.

[4]

C. W. Li, K. Yu, N. Shyh-Chang, et al., “Circulating Factors Associated With Sarcopenia During Ageing and After Intensive Lifestyle Intervention,” Journal of Cachexia, Sarcopenia and Muscle 10 (2019): 586-600, https://doi.org/10.1002/jcsm.12417.

[5]

C. W. Li, K. Yu, N. Shyh-Chang, et al., “Pathogenesis of Sarcopenia and the Relationship With Fat Mass: Descriptive Review,” Journal of Cachexia, Sarcopenia and Muscle 13 (2022): 781-794, https://doi.org/10.1002/jcsm.12901.

[6]

L. Luo, Y. B. Chua, T. Liu, et al., “Muscle Injuries Induce a Prostacyclin-PPARγ/PGC1a-FAO Spike That Boosts Regeneration,” Advanced Science 10 (2023): e2301519, https://doi.org/10.1002/advs.202301519.

[7]

P. Wang, X. Liu, Z. Yao, et al., “Lin28a Maintains a Subset of Adult Muscle Stem Cells in an Embryonic-Like State,” Cell Research 33 (2023): 712-726, https://doi.org/10.1038/s41422-023-00818-y.

[8]

M. J. Chua, E. D. Yildirim, J. E. Tan, et al., “Assessment of Different Strategies for Scalable Production and Proliferation of Human Myoblasts,” Cell Proliferation 52 (2019): e12602, https://doi.org/10.1111/cpr.12602.

[9]

C. W. Li, K. Yu, N. Shyh-Chang, et al., “Sterol Metabolism and Protein Metabolism Are Differentially Correlated With Sarcopenia in Asian Chinese Men and Women,” Cell Proliferation 54 (2021): e12989, https://doi.org/10.1111/cpr.12989.

[10]

Z. Jiang, L. Zhang, Z. Yao, et al., “Machine Learning-Based Phenotypic Screening for Postmitotic Growth Inducers Uncover Vitamin D3 Metabolites as Small Molecule Ribosome Agonists,” Cell Proliferation 55 (2022): e13214, https://doi.org/10.1111/cpr.13214.

[11]

Y. Cheng, R. Liu, R. R. Wang, et al., “The Metabaging Cycle Promotes Non-Metabolic Chronic Diseases of Ageing,” Cell Proliferation 57 (2024): e13712, https://doi.org/10.1111/cpr.13712.

[12]

C. A. Collins, I. Olsen, P. S. Zammit, et al., “Stem Cell Function, Self-Renewal, and Behavioral Heterogeneity of Cells From the Adult Muscle Satellite Cell Niche,” Cell 122 (2005): 289-301, https://doi.org/10.1016/j.cell.2005.05.010.

[13]

A. Sacco, R. Doyonnas, P. Kraft, S. Vitorovic, and H. M. Blau, “Self-Renewal and Expansion of Single Transplanted Muscle Stem Cells,” Nature 456 (2008): 502-506, https://doi.org/10.1038/nature07384.

[14]

P. Wang, X. Liu, Y. Chen, et al., “Adult Progenitor Rejuvenation With Embryonic Factors,” Cell Proliferation 56 (2023): e13459, https://doi.org/10.1111/cpr.13459.

[15]

S. Mattapally, K. M. Pawlik, V. G. Fast, et al., “Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy,” Journal of the American Heart Association 7 (2018): e010239, https://doi.org/10.1161/jaha.118.010239.

[16]

S. Petrus-Reurer, N. Winblad, P. Kumar, et al., “Generation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells Lacking Human Leukocyte Antigen Class I and II,” Stem Cell Reports 14 (2020): 648-662, https://doi.org/10.1016/j.stemcr.2020.02.006.

[17]

N. K. Wolf, D. U. Kissiov, and D. H. Raulet, “Roles of Natural Killer Cells in Immunity to Cancer, and Applications to Immunotherapy,” Nature Reviews. Immunology 23 (2023): 90-105, https://doi.org/10.1038/s41577-022-00732-1.

[18]

A. Koenig, C. C. Chen, A. Marçais, et al., “Missing Self Triggers NK Cell-Mediated Chronic Vascular Rejection of Solid Organ Transplants,” Nature Communications 10 (2019): 5350, https://doi.org/10.1038/s41467-019-13113-5.

[19]

V. M. Braud, D. S. Allan, C. A. O'Callaghan, et al., “HLA-E Binds to Natural Killer Cell Receptors CD94/NKG2A, B and C,” Nature 391 (1998): 795-799, https://doi.org/10.1038/35869.

[20]

G. G. Gornalusse, R. K. Hirata, S. E. Funk, et al., “HLA-E-Expressing Pluripotent Stem Cells Escape Allogeneic Responses and Lysis by NK Cells,” Nature Biotechnology 35 (2017): 765-772, https://doi.org/10.1038/nbt.3860.

[21]

A. A. Cross-Najafi, K. Farag, A. Isidan, et al., “Co-Expression of HLA-E and HLA-G on Genetically Modified Porcine Endothelial Cells Attenuates Human NK Cell-Mediated Degranulation,” Frontiers in Immunology 14 (2023): 1217809, https://doi.org/10.3389/fimmu.2023.1217809.

[22]

X. Jiang, J. Wang, X. Deng, et al., “Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape,” Molecular Cancer 18 (2019): 10, https://doi.org/10.1186/s12943-018-0928-4.

[23]

M. Wu, Q. Huang, Y. Xie, et al., “Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade via Combination Therapy and PD-L1 Regulation,” Journal of Hematology & Oncology 15 (2022): 24, https://doi.org/10.1186/s13045-022-01242-2.

[24]

Q. Tang, Y. Chen, X. Li, et al., “The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers,” Frontiers in Immunology 13 (2022): 964442, https://doi.org/10.3389/fimmu.2022.964442.

[25]

R. M. Hoek, S. R. Ruuls, C. A. Murphy, et al., “Down-Regulation of the Macrophage Lineage Through Interaction With OX2 (CD200),” Science 290 (2000): 1768-1771, https://doi.org/10.1126/science.290.5497.1768.

[26]

Y. Li, D. Zhang, L. Xu, et al., “Cell-Cell Contact With Proinflammatory Macrophages Enhances the Immunotherapeutic Effect of Mesenchymal Stem Cells in Two Abortion Models,” Cellular & Molecular Immunology 16 (2019): 908-920, https://doi.org/10.1038/s41423-019-0204-6.

[27]

M. Yu, X. Hu, Z. Pan, et al., “Endogenous Retrovirus-Derived Enhancers Confer the Transcriptional Regulation of Human Trophoblast Syncytialization,” Nucleic Acids Research 51 (2023): 4745-4759, https://doi.org/10.1093/nar/gkad109.

[28]

A. Vargas, J. Moreau, S. Landry, et al., “Syncytin-2 Plays an Important Role in the Fusion of Human Trophoblast Cells,” Journal of Molecular Biology 392 (2009): 301-318, https://doi.org/10.1016/j.jmb.2009.07.025.

[29]

A. G. Lokossou, C. Toudic, P. T. Nguyen, et al., “Endogenous Retrovirus-Encoded Syncytin-2 Contributes to Exosome-Mediated Immunosuppression of T Cells†,” Biology of Reproduction 102 (2020): 185-198, https://doi.org/10.1093/biolre/ioz124.

[30]

D. Yu, H. Wan, C. Tong, et al., “A Multi-Tissue Metabolome Atlas of Primate Pregnancy,” Cell 187 (2024): 764-781.e714, https://doi.org/10.1016/j.cell.2023.11.043.

[31]

X. Yu, H. Wu, J. Su, et al., “Acetyl-CoA Metabolism Maintains Histone Acetylation for Syncytialization of Human Placental Trophoblast Stem Cells,” Cell Stem Cell 31 (2024): 1280-1297.e1287, https://doi.org/10.1016/j.stem.2024.07.003.

[32]

D. Yu, L. Luo, H. Wang, and N. Shyh-Chang, “Pregnancy-Induced Metabolic Reprogramming and Regenerative Responses to Pro-Aging Stresses,” Trends in Endocrinology and Metabolism. Published ahead of print, August 8, 2024, https://doi.org/10.1016/j.tem.2024.07.011.

[33]

J. R. Enterina, J. Jung, and M. S. Macauley, “Coordinated Roles for Glycans in Regulating the Inhibitory Function of CD22 on B Cells,” Biomedical Journal 42 (2019): 218-232, https://doi.org/10.1016/j.bj.2019.07.010.

[34]

E. A. Clark and N. V. Giltiay, “CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity,” Frontiers in Immunology 9 (2018): 2235, https://doi.org/10.3389/fimmu.2018.02235.

[35]

R. Ballet, M. Brennan, C. Brandl, et al., “A CD22-Shp1 Phosphatase Axis Controls Integrin β(7) Display and B Cell Function in Mucosal Immunity,” Nature Immunology 22 (2021): 381-390, https://doi.org/10.1038/s41590-021-00862-z.

[36]

T. W. Kim, S. Y. Koo, M. Riessland, et al., “TNF-NF-κB-p53 Axis Restricts In Vivo Survival of hPSC-Derived Dopamine Neurons,” Cell 187 (2024): 3671-3689.e3623, https://doi.org/10.1016/j.cell.2024.05.030.

[37]

P. Ghafoori, T. Yoshimura, B. Turpie, and S. Masli, “Increased IkappaB Alpha Expression Is Essential for the Tolerogenic Property of TGF-Beta-Exposed APCs,” FASEB Journal 23 (2009): 2226-2234, https://doi.org/10.1096/fj.08-124545.

[38]

D. L. Porras, Y. Wang, P. Zhou, L. L. Molinero, and M. L. Alegre, “Role of T-Cell-Specific Nuclear Factor κB in Islet Allograft Rejection,” Transplantation 93 (2012): 976-982, https://doi.org/10.1097/TP.0b013e31824d11d7.

[39]

S. Levenberg, J. Rouwkema, M. Macdonald, et al., “Engineering Vascularized Skeletal Muscle Tissue,” Nature Biotechnology 23 (2005): 879-884, https://doi.org/10.1038/nbt1109.

[40]

L. Debbi, B. Zohar, M. Shuhmaher, Y. Shandalov, I. Goldfracht, and S. Levenberg, “Integrating Engineered Macro Vessels With Self-Assembled Capillaries in 3D Implantable Tissue for Promoting Vascular Integration In-Vivo,” Biomaterials 280 (2022): 121286, https://doi.org/10.1016/j.biomaterials.2021.121286.

[41]

J. Gilbert-Honick and W. Grayson, “Vascularized and Innervated Skeletal Muscle Tissue Engineering,” Advanced Healthcare Materials 9 (2020): e1900626, https://doi.org/10.1002/adhm.201900626.

[42]

D. Gholobova, L. Terrie, M. Gerard, H. Declercq, and L. Thorrez, “Vascularization of Tissue-Engineered Skeletal Muscle Constructs,” Biomaterials 235 (2020): 119708, https://doi.org/10.1016/j.biomaterials.2019.119708.

[43]

L. E. Woodard and M. H. Wilson, “piggyBac-Ing Models and New Therapeutic Strategies,” Trends in Biotechnology 33 (2015): 525-533, https://doi.org/10.1016/j.tibtech.2015.06.009.

[44]

T. VandenDriessche, Z. Ivics, Z. Izsvák, and M. K. Chuah, “Emerging Potential of Transposons for Gene Therapy and Generation of Induced Pluripotent Stem Cells,” Blood 114 (2009): 1461-1468, https://doi.org/10.1182/blood-2009-04-210427.

[45]

K. Yusa, R. Rad, J. Takeda, and A. Bradley, “Generation of Transgene-Free Induced Pluripotent Mouse Stem Cells by the piggyBac Transposon,” Nature Methods 6 (2009): 363-369, https://doi.org/10.1038/nmeth.1323.

[46]

K. Yusa, “Seamless Genome Editing in Human Pluripotent Stem Cells Using Custom Endonuclease-Based Gene Targeting and the piggyBac Transposon,” Nature Protocols 8 (2013): 2061-2078, https://doi.org/10.1038/nprot.2013.126.

[47]

G. Wang, L. Yang, D. Grishin, et al., “Efficient, Footprint-Free Human iPSC Genome Editing by Consolidation of Cas9/CRISPR and piggyBac Technologies,” Nature Protocols 12 (2017): 88-103, https://doi.org/10.1038/nprot.2016.152.

[48]

J. Harding, K. Vintersten-Nagy, H. Yang, et al., “Immune-Privileged Tissues Formed From Immunologically Cloaked Mouse Embryonic Stem Cells Survive Long Term in Allogeneic Hosts,” Nature Biomedical Engineering 8 (2024): 427-442, https://doi.org/10.1038/s41551-023-01133-y.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/