Muscle-Derived Bioactive Factors: MyoEVs and Myokines

Xupeng Liu , Ziyue Yao , Liping Zhang , Ng Shyh-Chang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13801

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13801 DOI: 10.1111/cpr.13801
LETTER TO THE EDITOR

Muscle-Derived Bioactive Factors: MyoEVs and Myokines

Author information +
History +
PDF

Cite this article

Download citation ▾
Xupeng Liu, Ziyue Yao, Liping Zhang, Ng Shyh-Chang. Muscle-Derived Bioactive Factors: MyoEVs and Myokines. Cell Proliferation, 2025, 58(3): e13801 DOI:10.1111/cpr.13801

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. K. Pedersen and M. A. Febbraio, “Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6,” Physiological Reviews 88, no. 4 (2008): 1379-1406.

[2]

M. Colombo, G. Raposo, and C. Thery, “Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles,” Annual Review of Cell and Developmental Biology 30 (2014): 255-289.

[3]

G. van Niel, G. D'Angelo, and G. Raposo, “Shedding Light on the Cell Biology of Extracellular Vesicles,” Nature Reviews. Molecular Cell Biology 19, no. 4 (2018): 213-228.

[4]

Y. An, S. Lin, X. Tan, et al., “Exosomes From Adipose-Derived Stem Cells and Application to Skin Wound Healing,” Cell Proliferation 54, no. 3 (2021): e12993.

[5]

S. Ma, X. Xing, H. Huang, et al., “Skeletal Muscle-Derived Extracellular Vesicles Transport Glycolytic Enzymes to Mediate Muscle-to-Bone Crosstalk,” Cell Metabolism 35, no. 11 (2023): 2028-2043 e2027.

[6]

M. Whitham, B. L. Parker, M. Friedrichsen, et al., “Extracellular Vesicles Provide a Means for Tissue Crosstalk During Exercise,” Cell Metabolism 27, no. 1 (2018): 237-251 e234.

[7]

J. Zhang, Y. Gao, and J. Yan, “Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration Under Disuse Conditions,” Metabolites 14, no. 2 (2024): 88.

[8]

Z. Xing, L. Guo, S. Li, et al., “Skeletal Muscle-Derived Exosomes Prevent Osteoporosis by Promoting Osteogenesis,” Life Sciences 357 (2024): 123079.

[9]

B. Yue, H. Yang, J. Wang, et al., “Exosome Biogenesis, Secretion and Function of Exosomal miRNAs in Skeletal Muscle Myogenesis,” Cell Proliferation 53, no. 7 (2020): e12857.

[10]

X. T. T. Dang, C. D. Phung, C. M. H. Lim, et al., “Dendritic Cell-Targeted Delivery of Antigens Using Extracellular Vesicles for Anti-Cancer Immunotherapy,” Cell Proliferation 57, no. 7 (2024): e13622.

[11]

B. K. Pedersen and M. A. Febbraio, “Muscles, Exercise and Obesity: Skeletal Muscle as a Secretory Organ,” Nature Reviews Endocrinology 8, no. 8 (2012): 457-465.

[12]

M. C. K. Severinsen and B. K. Pedersen, “Muscle-Organ Crosstalk: The Emerging Roles of Myokines,” Endocrine Reviews 41, no. 4 (2020): 594-609.

[13]

H. Li, H. Sun, B. Qian, et al., “Increased Expression of FGF-21 Negatively Affects Bone Homeostasis in Dystrophin/Utrophin Double Knockout Mice,” Journal of Bone and Mineral Research 35, no. 4 (2020): 738-752.

[14]

A. L. Mammen and V. Sartorelli, “IL-6 Blockade as a Therapeutic Approach for Duchenne Muscular Dystrophy,” eBioMedicine 2, no. 4 (2015): 274-275.

[15]

M. Lombardo, G. Aiello, D. Fratantonio, S. Karav, and S. Baldelli, “Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition,” Nutrients 16, no. 18 (2024): 3097.

[16]

M. C. Le Bihan, A. Bigot, S. S. Jensen, et al., “In-Depth Analysis of the Secretome Identifies Three Major Independent Secretory Pathways in Differentiating Human Myoblasts,” Journal of Proteomics 77 (2012): 344-356.

[17]

W. Aoi and Y. Tanimura, “Roles of Skeletal Muscle-Derived Exosomes in Organ Metabolic and Immunological Communication,” Frontiers in Endocrinology 12 (2021): 697204.

[18]

J. J. McCarthy, “MicroRNA-206: The Skeletal Muscle-Specific myomiR,” Biochimica et Biophysica Acta 1779, no. 11 (2008): 682-691.

[19]

C. J. Mitchell, R. F. D'Souza, W. Schierding, et al., “Identification of Human Skeletal Muscle miRNA Related to Strength by High-Throughput Sequencing,” Physiological Genomics 50, no. 6 (2018): 416-424.

[20]

J. Wang, L. Li, Z. Zhang, et al., “Extracellular Vesicles Mediate the Communication of Adipose Tissue With Brain and Promote Cognitive Impairment Associated With Insulin Resistance,” Cell Metabolism 34, no. 9 (2022): 1264-1279 e1268.

[21]

J. S. Choi, H. I. Yoon, K. S. Lee, et al., “Exosomes From Differentiating Human Skeletal Muscle Cells Trigger Myogenesis of Stem Cells and Provide Biochemical Cues for Skeletal Muscle Regeneration,” Journal of Controlled Release 222 (2016): 107-115.

[22]

S. Watanabe, Y. Sudo, T. Makino, et al., “Skeletal Muscle Releases Extracellular Vesicles With Distinct Protein and microRNA Signatures That Function in the Muscle Microenvironment,” PNAS Nexus 1, no. 4 (2022): pgac173.

[23]

M. C. Alfonzo, A. Al Saedi, S. Fulzele, and M. W. Hamrick, “Extracellular Vesicles as Communicators of Senescence in Musculoskeletal Aging,” JBMR Plus 6, no. 11 (2022): e10686.

[24]

K. B. Youssef El Baradie and M. W. Hamrick, “Therapeutic Application of Extracellular Vesicles for Musculoskeletal Repair & Regeneration,” Connective Tissue Research 62, no. 1 (2021): 99-114.

[25]

I. J. Vechetti, T. Valentino, C. B. Mobley, and J. J. McCarthy, “The Role of Extracellular Vesicles in Skeletal Muscle and Systematic Adaptation to Exercise,” Journal of Physiology 599, no. 3 (2021): 845-861.

[26]

Q. Xu, Y. Cui, J. Luan, X. Zhou, H. Li, and J. Han, “Exosomes From C2C12 Myoblasts Enhance Osteogenic Differentiation of MC3T3-E1 Pre-Osteoblasts by Delivering miR-27a-3p,” Biochemical and Biophysical Research Communications 498, no. 1 (2018): 32-37.

[27]

Y. Li, X. Wang, C. Pan, et al., “Myoblast-Derived Exosomal Prrx2 Attenuates Osteoporosis via Transcriptional Regulation of lncRNA-MIR22HG to Activate Hippo Pathway,” Molecular Medicine 29, no. 1 (2023): 54.

[28]

H. Huang, S. Ma, X. Xing, et al., “Muscle-Derived Extracellular Vesicles Improve Disuse-Induced Osteoporosis by Rebalancing Bone Formation and Bone Resorption,” Acta Biomaterialia 157 (2023): 609-624.

[29]

R. L. Jilka, G. Hangoc, G. Girasole, et al., “Increased Osteoclast Development After Estrogen Loss: Mediation by Interleukin-6,” Science 257, no. 5066 (1992): 88-91.

[30]

B. Dankbar, M. Fennen, D. Brunert, et al., “Myostatin Is a Direct Regulator of Osteoclast Differentiation and Its Inhibition Reduces Inflammatory Joint Destruction in Mice,” Nature Medicine 21, no. 9 (2015): 1085-1090.

[31]

Y. Takafuji, K. Tatsumi, M. Ishida, N. Kawao, K. Okada, and H. Kaji, “Extracellular Vesicles Secreted From Mouse Muscle Cells Suppress Osteoclast Formation: Roles of Mitochondrial Energy Metabolism,” Bone 134 (2020): 115298.

[32]

J. Henningsen, K. T. Rigbolt, B. Blagoev, B. K. Pedersen, and I. Kratchmarova, “Dynamics of the Skeletal Muscle Secretome During Myoblast Differentiation,” Molecular & Cellular Proteomics 9, no. 11 (2010): 2482-2496.

[33]

D. P. Romancino, G. Paterniti, Y. Campos, et al., “Identification and Characterization of the Nano-Sized Vesicles Released by Muscle Cells,” FEBS Letters 587, no. 9 (2013): 1379-1384.

[34]

M. Guescini, D. Guidolin, L. Vallorani, et al., “C2C12 Myoblasts Release Micro-Vesicles Containing mtDNA and Proteins Involved in Signal Transduction,” Experimental Cell Research 316, no. 12 (2010): 1977-1984.

[35]

A. Forterre, A. Jalabert, K. Chikh, et al., “Myotube-Derived Exosomal miRNAs Downregulate Sirtuin1 in Myoblasts During Muscle Cell Differentiation,” Cell Cycle 13, no. 1 (2014): 78-89.

[36]

L. Grube, R. Dellen, F. Kruse, H. Schwender, K. Stühler, and G. Poschmann, “Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach to Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis,” Journal of Proteome Research 17, no. 2 (2018): 879-890.

[37]

K. Ohlendieck, “Skeletal Muscle Proteomics: Current Approaches, Technical Challenges and Emerging Techniques,” Skeletal Muscle 1, no. 1 (2011): 6.

[38]

S. Raschke, K. Eckardt, K. Bjørklund Holven, J. Jensen, and J. Eckel, “Identification and Validation of Novel Contraction-Regulated Myokines Released From Primary Human Skeletal Muscle Cells,” PLoS One 8, no. 4 (2013): e62008.

[39]

L. Wang, S. Liu, K. Li, et al., “General Requirements for the Production of Extracellular Vesicles Derived From Human Stem Cells,” Cell Proliferation 57, no. 3 (2024): e13554.

[40]

J. G. Tidball, “Regulation of Muscle Growth and Regeneration by the Immune System,” Nature Reviews Immunology 17, no. 3 (2017): 165-178.

[41]

S. Kim, M. J. Lee, J. Y. Choi, et al., “Roles of Exosome-Like Vesicles Released From Inflammatory C2C12 Myotubes: Regulation of Myocyte Differentiation and Myokine Expression,” Cellular Physiology and Biochemistry 48, no. 5 (2018): 1829-1842.

[42]

P. Wang, X. Liu, Y. Chen, et al., “Adult Progenitor Rejuvenation With Embryonic Factors,” Cell Proliferation 56, no. 5 (2023): e13459.

[43]

P. Wang, X. Liu, Z. Yao, et al., “Lin28a Maintains a Subset of Adult Muscle Stem Cells in an Embryonic-Like State,” Cell Research 33, no. 9 (2023): 712-726.

[44]

D. Song, Y. Chen, P. Wang, Y. Cheng, and N. Shyh-Chang, “Lin28a Forms an RNA-Binding Complex With Igf2bp3 to Regulate m(6)A-Modified Stress Response Genes in Stress Granules of Muscle Stem Cells,” Cell Proliferation 57 (2024): e13707.

[45]

L. Barile and G. Vassalli, “Exosomes: Therapy Delivery Tools and Biomarkers of Diseases,” Pharmacology & Therapeutics 174 (2017): 63-78.

[46]

H. Wang, B. Wang, A. Zhang, et al., “Exosome-Mediated miR-29 Transfer Reduces Muscle Atrophy and Kidney Fibrosis in Mice,” Molecular Therapy 27, no. 3 (2019): 571-583.

[47]

C. Frühbeis, D. Fröhlich, W. P. Kuo, et al., “Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication,” PLoS Biology 11, no. 7 (2013): e1001604.

[48]

N. Regev-Rudzki, D. W. Wilson, T. G. Carvalho, et al., “Cell-Cell Communication Between Malaria-Infected Red Blood Cells via Exosome-Like Vesicles,” Cell 153, no. 5 (2013): 1120-1133.

[49]

E. R. Abels and X. O. Breakefield, “Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake,” Cellular and Molecular Neurobiology 36, no. 3 (2016): 301-312.

[50]

S. Viaud, C. Théry, S. Ploix, et al., “Dendritic Cell-Derived Exosomes for Cancer Immunotherapy: What's Next?,” Cancer Research 70, no. 4 (2010): 1281-1285.

[51]

Y. Lee, S. El Andaloussi, and M. J. Wood, “Exosomes and Microvesicles: Extracellular Vesicles for Genetic Information Transfer and Gene Therapy,” Human Molecular Genetics 21, no. R1 (2012): R125-R134.

[52]

K. Hagiwara, T. Ochiya, and N. Kosaka, “A Paradigm Shift for Extracellular Vesicles as Small RNA Carriers: From Cellular Waste Elimination to Therapeutic Applications,” Drug Delivery and Translational Research 4, no. 1 (2014): 31-37.

[53]

W. M. Usman, T. C. Pham, Y. Y. Kwok, et al., “Efficient RNA Drug Delivery Using Red Blood Cell Extracellular Vesicles,” Nature Communications 9, no. 1 (2018): 2359.

[54]

Z. Mo, J. Y. A. Cheong, L. Xiang, M. T. N. Le, A. Grimson, and D. X. Zhang, “Extracellular Vesicle-Associated Organotropic Metastasis,” Cell Proliferation 54, no. 1 (2021): e12948.

[55]

S. Kamerkar, V. S. LeBleu, H. Sugimoto, et al., “Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic Cancer,” Nature 546, no. 7659 (2017): 498-503.

[56]

M. Mendt, S. Kamerkar, H. Sugimoto, et al., “Generation and Testing of Clinical-Grade Exosomes for Pancreatic Cancer,” JCI Insight 3, no. 8 (2018): e99263.

[57]

H. Chen, M. K. Jayasinghe, E. Y. M. Yeo, et al., “CD33-Targeting Extracellular Vesicles Deliver Antisense Oligonucleotides Against FLT3-ITD and miR-125b for Specific Treatment of Acute Myeloid Leukaemia,” Cell Proliferation 55, no. 9 (2022): e13255.

[58]

M. Abudoureyimu, H. Zhou, Y. Zhi, et al., “Recent Progress in the Emerging Role of Exosome in Hepatocellular Carcinoma,” Cell Proliferation 52, no. 2 (2019): e12541.

[59]

C. Hu, S. Meiners, C. Lukas, G. T. Stathopoulos, and J. Chen, “Role of Exosomal microRNAs in Lung Cancer Biology and Clinical Applications,” Cell Proliferation 53, no. 6 (2020): e12828.

[60]

Z. Wu, W. Li, M. Tan, et al., “IL-12 Minicircle Delivery via Extracellular Vesicles as Immunotherapy for Bladder Cancer,” Cell Proliferation (2024): e13739.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/