Optineurin Cooperates With NRF2 to Regulate Tooth Root Morphogenesis by Controlling Mitochondrial Dynamics and Apoptosis

Haojie Liu , Xinyu Zhang , Xiao Ge , ChingCho Hsu , Yan Wang , Simai Chen , Xingzhi Yan , Rongyao Xu , Junqing Ma , Shuyu Guo

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13799

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13799 DOI: 10.1111/cpr.13799
ORIGINAL ARTICLE

Optineurin Cooperates With NRF2 to Regulate Tooth Root Morphogenesis by Controlling Mitochondrial Dynamics and Apoptosis

Author information +
History +
PDF

Abstract

Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.5 (E16.5), postnatal day 1 (P1), and P7 mouse teeth, as well as embryonic and adult human teeth, to show that OPTN is vital for odontoblastic differentiation. In Optn−/− mice, we observed short root deformities and defective dentin, with impaired apical papilla differentiation and increased apoptosis. In vitro OPTN downregulation in stem cells of the apical papilla (SCAPs) exacerbated apoptosis and hindered odontoblastic differentiation. RNA-seq analysis revealed significant differences in mitochondrial dynamics between control and OPTN knockout SCAPs. We discovered that OPTN influences mitochondrial dynamics primarily by promoting fission, leading to odontoblastic differentiation and mineralisation. Mechanistically, OPTN cooperates with NRF2 to regulate mitochondrial fission via DRP1 phosphorylation and affects the transcription of BCL2. Rescue experiments using an activator of NRF2 in ex vivo organ cultures and local gingival injection experiments confirmed these findings. Therefore, we concluded that OPTN, interacting with NRF2, acts as a key regulator of SCAPs mitochondrial dynamics, mineralisation and apoptosis during tooth development. These findings provide fresh insights into the mechanisms underlying tooth root development.

Keywords

apoptosis / mitochondrial dynamics / nrf2 / optn / tooth development

Cite this article

Download citation ▾
Haojie Liu, Xinyu Zhang, Xiao Ge, ChingCho Hsu, Yan Wang, Simai Chen, Xingzhi Yan, Rongyao Xu, Junqing Ma, Shuyu Guo. Optineurin Cooperates With NRF2 to Regulate Tooth Root Morphogenesis by Controlling Mitochondrial Dynamics and Apoptosis. Cell Proliferation, 2025, 58(5): e13799 DOI:10.1111/cpr.13799

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. M. L. Pedersen, C. E. Sørensen, G. B. Proctor, G. H. Carpenter, and J. Ekström, “Salivary Secretion in Health and Disease,” Journal of Oral Rehabilitation 45, no. 9 (2018): 730-746.

[2]

T. Yu and O. D. Klein, “Molecular and Cellular Mechanisms of Tooth Development, Homeostasis and Repair,” Development (Cambridge, England) 147, no. 2 (2020): dev184754.

[3]

B. D. Sui, C. X. Zheng, W. M. Zhao, K. Xuan, B. Li, and Y. Jin, “Mesenchymal Condensation in Tooth Development and Regeneration: A Focus on Translational Aspects of Organogenesis,” Physiological Reviews 103, no. 3 (2023): 1899-1964.

[4]

M. Zeichner-David, K. Oishi, Z. Su, et al., “Role of Hertwig's Epithelial Root Sheath Cells in Tooth Root Development,” Developmental Dynamics: An Official Publication of the American Association of Anatomists 228, no. 4 (2003): 651-663.

[5]

H. U. Luder, “Malformations of the Tooth Root in Humans,” Frontiers in Physiology 6 (2015): 307.

[6]

J. N. S. Vargas, M. Hamasaki, T. Kawabata, R. J. Youle, and T. Yoshimori, “The Mechanisms and Roles of Selective Autophagy in Mammals,” Nature Reviews. Molecular Cell Biology 24, no. 3 (2023): 167-185.

[7]

M. E. McCauley and R. H. Baloh, “Inflammation in ALS/FTD Pathogenesis,” Acta Neuropathologica 137, no. 5 (2019): 715-730.

[8]

C. S. Evans and E. L. F. Holzbaur, “Autophagy and Mitophagy in ALS,” Neurobiology of Disease 122 (2019): 35-40.

[9]

G. Swarup and Z. Sayyad, “Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin,” Frontiers in Immunology 9 (2018): 1287.

[10]

C. Gomes, K. B. VanderWall, Y. Pan, et al., “Astrocytes Modulate Neurodegenerative Phenotypes Associated With Glaucoma in OPTN(E50K) Human Stem Cell-Derived Retinal Ganglion Cells,” Stem Cell Reports 17, no. 7 (2022): 1636-1649.

[11]

M. H. Helfrich, “Osteoclast Diseases and Dental Abnormalities,” Archives of Oral Biology 50, no. 2 (2005): 115-122.

[12]

N. M. Appelman-Dijkstra and S. E. Papapoulos, “Paget's Disease of Bone,” Best Practice & Research. Clinical Endocrinology & Metabolism 32, no. 5 (2018): 657-668.

[13]

N. H. Fauzi, Y. D. Ardini, Z. Zainuddin, and W. Lestari, “A Review on Non-Syndromic Tooth Agenesis Associated With PAX9 Mutations,” Japanese Dental Science Review 54, no. 1 (2018): 30-36.

[14]

Z. Z. Liu, C. G. Hong, W. B. Hu, et al., “Autophagy Receptor OPTN (Optineurin) Regulates Mesenchymal Stem Cell Fate and Bone-Fat Balance During Aging by Clearing FABP3,” Autophagy 17, no. 10 (2021): 2766-2782.

[15]

Z. Khavandgar, S. Alebrahim, H. Eimar, F. Tamimi, M. D. McKee, and M. Murshed, “Local Regulation of Tooth Mineralization by Sphingomyelin Phosphodiesterase 3,” Journal of Dental Research 92, no. 4 (2013): 358-364.

[16]

K. Weekate, B. Chuenjitkuntaworn, P. Chuveera, et al., “Alterations of Mitochondrial Dynamics, Inflammation and Mineralization Potential of Lipopolysaccharide-Induced Human Dental Pulp Cells After Exposure to N-Acetyl Cysteine, Biodentine or ProRoot MTA,” International Endodontic Journal 54, no. 6 (2021): 951-965.

[17]

M. S. Shim, Y. Takihara, K. Y. Kim, et al., “Mitochondrial Pathogenic Mechanism and Degradation in Optineurin E50K Mutation-Mediated Retinal Ganglion Cell Degeneration,” Scientific Reports 6 (2016): 33830.

[18]

S. Chen, J. Gluhak-Heinrich, Y. H. Wang, et al., “Runx2, Osx, and Dspp in Tooth Development,” Journal of Dental Research 88, no. 10 (2009): 904-909.

[19]

J. Li, C. Parada, and Y. Chai, “Cellular and Molecular Mechanisms of Tooth Root Development,” Development (Cambridge, England) 144, no. 3 (2017): 374-384.

[20]

Y. Zhang, H. Zhang, Z. Xiao, G. Yuan, and G. Yang, “IPO7 Promotes Odontoblastic Differentiation and Inhibits Osteoblastic Differentiation Through Regulation of RUNX2 Expression and Translocation,” Stem Cells (Dayton, Ohio) 40, no. 11 (2022): 1020-1030.

[21]

M. Liu, G. Goldman, M. MacDougall, and S. Chen, “BMP Signaling Pathway in Dentin Development and Diseases,” Cells 11, no. 14 (2022): 2216.

[22]

J. Suh, N. K. Kim, W. Shim, et al., “Mitochondrial Fragmentation and Donut Formation Enhance Mitochondrial Secretion to Promote Osteogenesis,” Cell Metabolism 35, no. 2 (2023): 345-360.e347.

[23]

J. Yang, P. Chen, Y. Cao, et al., “Chemical Inhibition of Mitochondrial Fission via Targeting the DRP1-Receptor Interaction,” Cell Chemical Biology 30, no. 3 (2023): 278-294.e211.

[24]

F. He, X. Ru, and T. Wen, “NRF2, a Transcription Factor for Stress Response and Beyond,” International Journal of Molecular Sciences 21, no. 13 (2020): 4777.

[25]

Y. H. Lee, N. H. Lee, G. Bhattarai, et al., “Anti-Inflammatory Effect of Pachymic Acid Promotes Odontoblastic Differentiation via HO-1 in Dental Pulp Cells,” Oral Diseases 19, no. 2 (2013): 193-199.

[26]

X. Xi, Z. Li, H. Liu, S. Chen, and D. Liu, “Nrf2 Activation Is Involved in Cyclic Mechanical Stress-Stimulated Osteogenic Differentiation in Periodontal Ligament Stem Cells via PI3K/Akt Signaling and HO1-SOD2 Interaction,” Frontiers in Cell and Development Biology 9 (2021): 816000.

[27]

P. P. Praharaj, S. Patra, S. R. Mishra, et al., “CLU (Clusterin) Promotes Mitophagic Degradation of MSX2 Through an AKT-DNM1L/Drp1 Axis to Maintain SOX2-Mediated Stemness in Oral Cancer Stem Cells,” Autophagy 19, no. 8 (2023): 2196-2216.

[28]

M. L. Zou, Z. H. Chen, Y. Y. Teng, et al., “The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies,” Frontiers in Molecular Biosciences 8 (2021): 593310.

[29]

A. Z. Spitz and E. Gavathiotis, “Physiological and Pharmacological Modulation of BAX,” Trends in Pharmacological Sciences 43, no. 3 (2022): 206-220.

[30]

E. A. Abou Neel, A. Aljabo, A. Strange, et al., “Demineralization-Remineralization Dynamics in Teeth and Bone,” International Journal of Nanomedicine 11 (2016): 4743-4763.

[31]

J. Luo, P. Sun, S. Siwko, M. Liu, and J. Xiao, “The Role of GPCRs in Bone Diseases and Dysfunctions,” Bone Research 7 (2019): 19.

[32]

C. Simoncelli, E. Molini, B. Capolunghi, G. Ricci, N. Alunni, and N. Trabalza, “Evoked Oto-Acoustic Potentials in the First 60 Hours of Life,” Acta Oto-Rhino-Laryngologica Belgica 46, no. 1 (1992): 63-66.

[33]

J. Yang, S. K. Wang, M. Choi, et al., “Taurodontism, Variations in Tooth Number, and Misshapened Crowns in Wnt10a Null Mice and Human Kindreds,” Molecular Genetics & Genomic Medicine 3, no. 1 (2015): 40-58.

[34]

H. M. Ni, J. A. Williams, and W. X. Ding, “Mitochondrial Dynamics and Mitochondrial Quality Control,” Redox Biology 4 (2015): 6-13.

[35]

X. Hu, S. W. Wong, K. Liang, et al., “Optineurin Regulates NRF2-Mediated Antioxidant Response in a Mouse Model of Paget's Disease of Bone,” Science Advances 9, no. 4 (2023): eade6998.

[36]

I. Bellezza, I. Giambanco, A. Minelli, and R. Donato, “Nrf2-Keap1 Signaling in Oxidative and Reductive Stress,” Biochimica et Biophysica Acta Molecular Cell Research 1865, no. 5 (2018): 721-733.

[37]

P. Xue, X. Hu, E. Chang, et al., “Deficiency of Optineurin Enhances Osteoclast Differentiation by Attenuating the NRF2-Mediated Antioxidant Response,” Experimental & Molecular Medicine 53, no. 4 (2021): 667-680.

[38]

J. Wang, H. Zhang, W. Zhang, et al., “Bone Morphogenetic Protein-9 Effectively Induces Osteo/Odontoblastic Differentiation of the Reversibly Immortalized Stem Cells of Dental Apical Papilla,” Stem Cells and Development 23, no. 12 (2014): 1405-1416.

[39]

H. Zhang, J. Wang, F. Deng, et al., “Canonical Wnt Signaling Acts Synergistically on BMP9-Induced Osteo/Odontoblastic Differentiation of Stem Cells of Dental Apical Papilla (SCAPs),” Biomaterials 39 (2015): 145-154.

[40]

D. W. Dempster, J. E. Compston, M. K. Drezner, et al., “Standardized Nomenclature, Symbols, and Units for Bone Histomorphometry: A 2012 Update of the Report of the ASBMR Histomorphometry Nomenclature Committee,” Journal of Bone and Mineral Research 28, no. 1 (2013): 2-17.

[41]

Y. Fu, D. Ma, F. Fan, et al., “Noncanonical Wnt5a Signaling Suppresses Hippo/TAZ-Mediated Osteogenesis Partly Through the Canonical Wnt Pathway in SCAPs,” Drug Design, Development and Therapy 16 (2022): 469-483.

[42]

N. B. Ruparel, J. F. de Almeida, M. A. Henry, and A. Diogenes, “Characterization of a Stem Cell of Apical Papilla Cell Line: Effect of Passage on Cellular Phenotype,” Journal of Endodontics 39, no. 3 (2013): 357-363.

[43]

X. Chen, J. Huang, J. Wu, et al., “Human Mesenchymal Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13141.

[44]

S. Abe, K. Hamada, S. Yamaguchi, T. Amagasa, and M. Miura, “Characterization of the Radioresponse of Human Apical Papilla-Derived Cells,” Stem Cell Research & Therapy 2, no. 1 (2011): 2.

[45]

M. Zhou, S. Guo, L. Yuan, et al., “Blockade of LGR4 Inhibits Proliferation and Odonto/Osteogenic Differentiation of Stem Cells From Apical Papillae,” Journal of Molecular Histology 48, no. 5-6 (2017): 389-401.

[46]

M. V. Kuleshov, M. R. Jones, A. D. Rouillard, et al., “Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update,” Nucleic Acids Research 44, no. W1 (2016): W90-W97.

[47]

Z. Zeng, M. You, C. Fan, R. Rong, H. Li, and X. Xia, “Pathologically High Intraocular Pressure Induces Mitochondrial Dysfunction Through Drp1 and Leads to Retinal Ganglion Cell PANoptosis in Glaucoma,” Redox Biology 62 (2023): 102687.

[48]

S. Jung, S. Choe, H. Woo, et al., “Autophagic Death of Neural Stem Cells Mediates Chronic Stress-Induced Decline of Adult Hippocampal Neurogenesis and Cognitive Deficits,” Autophagy 16, no. 3 (2020): 512-530.

[49]

X. Han, K. Yoshizaki, T. Tian, K. Miyazaki, I. Takahashi, and S. Fukumoto, “Mouse Embryonic Tooth Germ Dissection and Ex Vivo Culture Protocol,” Bio-Protocol 10, no. 3 (2020): e3515.

[50]

J. Lu, N. Yu, Q. Liu, Y. Xie, and L. Zhen, “Periodontal Ligament Stem Cell Exosomes Key to Regulate Periodontal Regeneration by miR-31-5p in Mice Model,” International Journal of Nanomedicine 18 (2023): 5327-5342.

[51]

Y. Nakao, T. Fukuda, Q. Zhang, et al., “Exosomes From TNF-α-Treated Human Gingiva-Derived MSCs Enhance M2 Macrophage Polarization and Inhibit Periodontal Bone Loss,” Acta Biomaterialia 122 (2021): 306-324.

[52]

S. Guo, J. Gu, J. Ma, et al., “GATA4-Driven miR-206-3p Signatures Control Orofacial Bone Development by Regulating Osteogenic and Osteoclastic Activity,” Theranostics 11, no. 17 (2021): 8379-8395.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/