Single-Cell Transcriptomics Uncovers Core Signature for Regulating Mitochondrial Homeostasis During Testicular Ageing

Weijie Xu , Qiuru Huang , Yujuan Qi , Qingqing Hu , Cong Shen , Xia Chen , Jiaxin Li , Qiushi Xia , Ziyue Pan , Yi Zhang , Guoqing Han , Jingqi Huang , Yiheng Liu , Ziyu Cao , Ying Zheng , Bo Zheng , Zhifeng Gu , Jun Yu , Chi Sun

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13797

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13797 DOI: 10.1111/cpr.13797
ORIGINAL ARTICLE

Single-Cell Transcriptomics Uncovers Core Signature for Regulating Mitochondrial Homeostasis During Testicular Ageing

Author information +
History +
PDF

Abstract

Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing. Our examination unveiled that genes showing bias in spermatids exhibited higher dN/dS than those in GSCs_Spermatogonia. Genes biased towards young GSCs_Spermatogonia displayed higher dN/dS than those in old GSCs_Spermatogonia. Interestingly, genes biased towards young spermatids demonstrated lower dN/dS in contrast to those in old spermatids, revealing the complexity of evolutionary adaptations during ageing. Furthermore, mitochondria associated events, including oxidative phosphorylation, TCA cycle and pyruvate metabolism, were significantly enriched in germline subpopulations. Specifically, mitochondrial function was significantly impaired during the process of testicular ageing, concurrently emphasising the role of several key nuclear genome-encoded mitochondrial regulatory genes, such as Hsp60B, fzo, Tim17b1 and mRpL12. Our data offer insights into testicular homeostasis regulated by mitochondrial function during the ageing process.

Keywords

Drosophila / mitochondrial function / oxidative phosphorylation / spermatogenic cells / testicular ageing

Cite this article

Download citation ▾
Weijie Xu, Qiuru Huang, Yujuan Qi, Qingqing Hu, Cong Shen, Xia Chen, Jiaxin Li, Qiushi Xia, Ziyue Pan, Yi Zhang, Guoqing Han, Jingqi Huang, Yiheng Liu, Ziyu Cao, Ying Zheng, Bo Zheng, Zhifeng Gu, Jun Yu, Chi Sun. Single-Cell Transcriptomics Uncovers Core Signature for Regulating Mitochondrial Homeostasis During Testicular Ageing. Cell Proliferation, 2025, 58(5): e13797 DOI:10.1111/cpr.13797

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 2 (2023): 243-278, https://doi.org/10.1016/j.cell.2022.11.001.

[2]

C. Aging Biomarker, H. Bao, J. Cao, et al., “Biomarkers of Aging,” Science China. Life Sciences 66, no. 5 (2023): 893-1066, https://doi.org/10.1007/s11427-023-2305-0.

[3]

I. D. Harris, C. Fronczak, L. Roth, and R. B. Meacham, “Fertility and the Aging Male,” Revista de Urología 13, no. 4 (2011): e184-e190.

[4]

R. Sharma, A. Agarwal, V. K. Rohra, M. Assidi, M. Abu-Elmagd, and R. F. Turki, “Effects of Increased Paternal Age on Sperm Quality, Reproductive Outcome and Associated Epigenetic Risks to Offspring,” Reproductive Biology and Endocrinology 13 (2015): 35, https://doi.org/10.1186/s12958-015-0028-x.

[5]

S. Almeida, L. Rato, M. Sousa, M. G. Alves, and P. F. Oliveira, “Fertility and Sperm Quality in the Aging Male,” Current Pharmaceutical Design 23, no. 30 (2017): 4429-4437, https://doi.org/10.2174/1381612823666170503150313.

[6]

Y. S. Khandwala, V. L. Baker, G. M. Shaw, D. K. Stevenson, Y. Lu, and M. L. Eisenberg, “Association of Paternal Age With Perinatal Outcomes Between 2007 and 2016 in the United States: Population Based Cohort Study,” BMJ 363 (2018): k4372, https://doi.org/10.1136/bmj.k4372.

[7]

W. Zhang, S. Xia, W. Xiao, et al., “A Single-Cell Transcriptomic Landscape of Mouse Testicular Aging,” Journal of Advanced Research 53 (2023): 219-234, https://doi.org/10.1016/j.jare.2022.12.007.

[8]

A. F. Ajayi, M. C. Onaolapo, A. I. Omole, W. J. Adeyemi, and D. T. Oluwole, “Mechanism Associated With Changes in Male Reproductive Functions During Ageing Process,” Experimental Gerontology 179 (2023): 112232, https://doi.org/10.1016/j.exger.2023.112232.

[9]

E. Bonilla and E. Y. Xu, “Identification and Characterization of Novel Mammalian Spermatogenic Genes Conserved From Fly to Human,” Molecular Human Reproduction 14, no. 3 (2008): 137-142, https://doi.org/10.1093/molehr/gan002.

[10]

H. White-Cooper and N. Bausek, “Evolution and Spermatogenesis,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365, no. 1546 (2010): 1465-1480, https://doi.org/10.1098/rstb.2009.0323.

[11]

M. D. W. Piper and L. Partridge, “Drosophila as a Model for Ageing,” Biochimica et Biophysica Acta—Molecular Basis of Disease 1864, no. 9 Pt A (2018): 2707-2717, https://doi.org/10.1016/j.bbadis.2017.09.016.

[12]

J. Yu, Y. Fu, Z. Li, et al., “Single-Cell RNA Sequencing Reveals Cell Landscape Following Antimony Exposure During Spermatogenesis in Drosophila Testes,” Cell Death Discovery 9, no. 1 (2023): 86, https://doi.org/10.1038/s41420-023-01391-4.

[13]

J. Yu, Z. Li, Y. Fu, et al., “Single-Cell RNA-Sequencing Reveals the Transcriptional Landscape of ND-42 Mediated Spermatid Elongation via Mitochondrial Derivative Maintenance in Drosophila Testes,” Redox Biology 62 (2023): 102671, https://doi.org/10.1016/j.redox.2023.102671.

[14]

H. Cui, Q. Huang, J. Li, et al., “Single-Cell RNA Sequencing Analysis to Evaluate Antimony Exposure Effects on Cell-Lineage Communications Within the Drosophila Testicular Niche,” Ecotoxicology and Environmental Safety 270 (2024): 115948, https://doi.org/10.1016/j.ecoenv.2024.115948.

[15]

Y. Li, N. T. Minor, J. K. Park, D. M. McKearin, and J. Z. Maines, “Bam and Bgcn antagonize Nanos-dependent germ-line stem cell maintenance,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 23 (2009): 9304-9309, https://doi.org/10.1073/pnas.0901452106.

[16]

J. Yu, Q. Zheng, Z. Li, et al., “CG6015 Controls Spermatogonia Transit-Amplifying Divisions by Epidermal Growth Factor Receptor Signaling in Drosophila Testes,” Cell Death & Disease 12, no. 5 (2021): 491, https://doi.org/10.1038/s41419-021-03783-9.

[17]

C. C. Baker and M. T. Fuller, “Translational Control of Meiotic Cell Cycle Progression and Spermatid Differentiation in Male Germ Cells by a Novel eIF4G Homolog,” Development 134, no. 15 (2007): 2863-2869, https://doi.org/10.1242/dev.003764.

[18]

J. J. Hwa, M. A. Hiller, M. T. Fuller, and A. Santel, “Differential Expression of the Drosophila Mitofusin Genes Fuzzy Onions (FZO) and Dmfn,” Mechanisms of Development 116, no. 1-2 (2002): 213-216, https://doi.org/10.1016/s0925-4773(02)00141-7.

[19]

C. Barreau, E. Benson, E. Gudmannsdottir, F. Newton, and H. White-Cooper, “Post-Meiotic Transcription in Drosophila Testes,” Development 135, no. 11 (2008): 1897-1902, https://doi.org/10.1242/dev.021949.

[20]

S. Xu, N. Hafer, B. Agunwamba, and P. Schedl, “The CPEB Protein Orb2 has Multiple Functions During Spermatogenesis in Drosophila melanogaster,” PLoS Genetics 8, no. 11 (2012): e1003079, https://doi.org/10.1371/journal.pgen.1003079.

[21]

C. E. Stanley and R. J. Kulathinal, “flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection,” G3 (Bethesda) 6, no. 8 (2016): 2355-2363, https://doi.org/10.1534/g3.116.031138.

[22]

E. Witt, C. B. Langer, N. Svetec, and L. Zhao, “Transcriptional and Mutational Signatures of the Drosophila Ageing Germline,” Nature Ecology & Evolution 7, no. 3 (2023): 440-449, https://doi.org/10.1038/s41559-022-01958-x.

[23]

Y. Yuan, Y. Li, Q. Deng, J. Yang, and J. Zhang, “Selenadiazole-Induced Hela Cell Apoptosis Through the Redox Oxygen Species-Mediated JAK2/STAT3 Signaling Pathway,” ACS Omega 9, no. 19 (2024): 20919-20926, https://doi.org/10.1021/acsomega.3c10107.

[24]

A. K. Danga, S. Kour, A. Kumari, and P. C. Rath, “Cell-Type Specific and Differential Expression of LINC-RSAS Long Noncoding RNA Declines in the Testes During Ageing of the Rat,” Biogerontology 25, no. 3 (2024): 543-566, https://doi.org/10.1007/s10522-023-10088-1.

[25]

Z. Li, Y. Wu, Y. Fu, et al., “Cyst Stem Cell Lineage eIF5 Non-Autonomously Prevents Testicular Germ Cell Tumor Formation via eIF1A/eIF2γ-Mediated Pre-Initiation Complex,” Stem Cell Research & Therapy 13, no. 1 (2022): 351, https://doi.org/10.1186/s13287-022-03025-5.

[26]

Q. Huang, X. Chen, H. Yu, et al., “Structure and Molecular Basis of Spermatid Elongation in the Drosophila Testis,” Open Biology 13, no. 11 (2023): 230136, https://doi.org/10.1098/rsob.230136.

[27]

B. P. Hermann, K. Cheng, A. Singh, et al., “The Mammalian Spermatogenesis Single-Cell Transcriptome, From Spermatogonial Stem Cells to Spermatids,” Cell Reports 25, no. 6 (2018): 1650-1667, https://doi.org/10.1016/j.celrep.2018.10.026.

[28]

Z. Deng, L. Zhao, S. Li, et al., “Targeting Dysregulated Phago-/Auto-Lysosomes in Sertoli Cells to Ameliorate Late-Onset Hypogonadism,” Nature Aging 4, no. 5 (2024): 647-663, https://doi.org/10.1038/s43587-024-00614-2.

[29]

J. Zhuang, X. Li, J. Yao, et al., “Single-Cell RNA Sequencing Reveals the Local Cell Landscape in Mouse Epididymal Initial Segment During Aging,” Immunity & Ageing 20, no. 1 (2023): 21, https://doi.org/10.1186/s12979-023-00345-9.

[30]

X. Chen, Y. Qi, Q. Huang, et al., “Single-Cell Transcriptome Characteristics of Testicular Terminal Epithelium Lineages During Aging in the Drosophila,” Aging Cell 23, no. 3 (2024): e14057, https://doi.org/10.1111/acel.14057.

[31]

E. M. Sawyer, E. C. Brunner, Y. Hwang, et al., “Testis-Specific ATP Synthase Peripheral Stalk Subunits Required for Tissue-Specific Mitochondrial Morphogenesis in Drosophila,” BMC Cell Biology 18, no. 1 (2017): 16, https://doi.org/10.1186/s12860-017-0132-1.

[32]

J. S. Sousa, E. D'Imprima, and J. Vonck, “Mitochondrial Respiratory Chain Complexes,” Sub-Cellular Biochemistry 87 (2018): 167-227, https://doi.org/10.1007/978-981-10-7757-9_7.

[33]

Z. Zhang, J. Miao, and Y. Wang, “Mitochondrial Regulation in spermatogenesis,” Reproduction 163, no. 4 (2022): R55-R69, https://doi.org/10.1530/REP-21-0431.

[34]

S. Zhao, N. Heng, H. Wang, et al., “Mitofusins: From Mitochondria to Fertility,” Cellular and Molecular Life Sciences 79, no. 7 (2022): 370, https://doi.org/10.1007/s00018-022-04386-z.

[35]

S. Srinivasan, M. Guha, D. W. Dong, et al., “Disruption of Cytochrome c Oxidase Function Induces the Warburg Effect and Metabolic Reprogramming,” Oncogene 35, no. 12 (2016): 1585-1595, https://doi.org/10.1038/onc.2015.227.

[36]

F. Su, C. Spee, E. Araujo, et al., “A Novel HDL-Mimetic Peptide HM-10/10 Protects RPE and Photoreceptors in Murine Models of Retinal Degeneration,” International Journal of Molecular Sciences 20, no. 19 (2019): 4807, https://doi.org/10.3390/ijms20194807.

[37]

H. Luo, R. Gu, H. Ouyang, et al., “Cadmium Exposure Induces Osteoporosis Through Cellular Senescence, Associated With Activation of NF-κB Pathway and Mitochondrial Dysfunction,” Environmental Pollution 290 (2021): 118043, https://doi.org/10.1016/j.envpol.2021.118043.

[38]

Q. Huang, J. Li, Y. Qi, et al., “Copper Overload Exacerbates Testicular Aging Mediated by lncRNA:CR43306 Deficiency Through Ferroptosis in Drosophila,” Redox Biology 76 (2024): 103315, https://doi.org/10.1016/j.redox.2024.103315.

[39]

E. M. Sadeesh, A. Malik, M. S. Lahamge, and P. Singh, “Differential Expression of Nuclear-Derived Mitochondrial Succinate Dehydrogenase Genes in Metabolically Active Buffalo Tissues,” Molecular Biology Reports 51, no. 1 (2024): 1071, https://doi.org/10.1007/s11033-024-10022-9.

[40]

E. M. Sadeesh, N. Singla, M. S. Lahamge, S. Kumari, A. N. Ampadi, and M. Anuj, “Tissue Heterogeneity of Mitochondrial Activity, Biogenesis and Mitochondrial Protein Gene Expression in Buffalo,” Molecular Biology Reports 50, no. 6 (2023): 5255-5266, https://doi.org/10.1007/s11033-023-08416-2.

[41]

E. M. Sadeesh, M. S. Lahamge, A. Malik, and A. N. Ampadi, “Nuclear Genome-Encoded Mitochondrial OXPHOS Complex I Genes in Female Buffalo Show Tissue-Specific Differences,” Molecular Biotechnology (2024): 1-17, https://doi.org/10.1007/s12033-024-01206-6.

[42]

E. M. Sadeesh, M. S. Lahamge, A. Malik, and A. N. Ampadi, “Differential Expression of Nuclear-Encoded Mitochondrial Protein Genes of ATP Synthase Across Different Tissues of Female Buffalo,” Molecular Biotechnology (2024): 1-18, https://doi.org/10.1007/s12033-024-01085-x.

[43]

K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90, no. 1 (1997): 121-129, https://doi.org/10.1016/s0092-8674(00)80319-0.

[44]

S. Sarkar and S. C. Lakhotia, “The Hsp60C Gene in the 25F Cytogenetic Region in Drosophila melanogaster Is Essential for Tracheal Development and Fertility,” Journal of Genetics 84, no. 3 (2005): 265-281, https://doi.org/10.1007/BF02715797.

[45]

L. D. Steele, B. S. Coates, K. M. Seong, et al., “Variation in Mitochondria-Derived Transcript Levels Associated With DDT Resistance in the 91-R Strain of Drosophila melanogaster (Diptera: Drosophilidae),” Journal of Insect Science 18, no. 6 (2018): 1, https://doi.org/10.1093/jisesa/iey101.

[46]

M. Venkatasubramanian, K. Chetal, D. J. Schnell, G. Atluri, and N. Salomonis, “Resolving Single-Cell Heterogeneity From Hundreds of Thousands of Cells Through Sequential Hybrid Clustering and NMF,” Bioinformatics 36, no. 12 (2020): 3773-3780, https://doi.org/10.1093/bioinformatics/btaa201.

[47]

T. Yang, N. Alessandri-Haber, W. Fury, et al., “AdRoit Is an Accurate and Robust Method to Infer Complex Transcriptome Composition,” Communications Biology 4, no. 1 (2021): 1218, https://doi.org/10.1038/s42003-021-02739-1.

[48]

J. K. Kim, A. A. Kolodziejczyk, T. Ilicic, S. A. Teichmann, and J. C. Marioni, “Characterizing Noise Structure in Single-Cell RNA-Seq Distinguishes Genuine From Technical Stochastic Allelic Expression,” Nature Communications 6 (2015): 8687, https://doi.org/10.1038/ncomms9687.

[49]

K. A. Crandall, O. R. Bininda-Emonds, G. M. Mace, and R. K. Wayne, “Considering Evolutionary Processes in Conservation Biology,” Trends in Ecology & Evolution 15, no. 7 (2000): 290-295, https://doi.org/10.1016/s0169-5347(00)01876-0.

[50]

R. C. Allen, R. Popat, S. P. Diggle, and S. P. Brown, “Targeting Virulence: Can We Make Evolution-Proof Drugs?,” Nature Reviews. Microbiology 12, no. 4 (2014): 300-308, https://doi.org/10.1038/nrmicro3232.

[51]

R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, “Spatial Reconstruction of Single-Cell Gene Expression Data,” Nature Biotechnology 33, no. 5 (2015): 495-502, https://doi.org/10.1038/nbt.3192.

[52]

A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating Single-Cell Transcriptomic Data Across Different Conditions, Technologies, and Species,” Nature Biotechnology 36, no. 5 (2018): 411-420, https://doi.org/10.1038/nbt.4096.

[53]

X. Qiu, Q. Mao, Y. Tang, et al., “Reversed Graph Embedding Resolves Complex Single-Cell Trajectories,” Nature Methods 14, no. 10 (2017): 979-982, https://doi.org/10.1038/nmeth.4402.

[54]

C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., “The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells,” Nature Biotechnology 32, no. 4 (2014): 381-386, https://doi.org/10.1038/nbt.2859.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/