Mitonuclear Communication in Stem Cell Function

Baozhou Peng , Yaning Wang , Hongbo Zhang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13796

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13796 DOI: 10.1111/cpr.13796
REVIEW

Mitonuclear Communication in Stem Cell Function

Author information +
History +
PDF

Abstract

Mitochondria perform multiple functions within the cell, including the production of ATP and a great deal of metabolic intermediates, while also contributing to the cellular stress response. The majority of mitochondrial proteins are encoded by nuclear genomes, highlighting the importance of mitonuclear communication for sustaining mitochondrial homeostasis and functional. As a crucial part of the intracellular signalling network, mitochondria can impact stem cell fate determinations. Considering the essential function of stem cells in tissue maintenance, regeneration and aging, it is important to understand how mitochondria influence stem cell fate. This review explores the significant roles of mitonuclear communication and mitochondrial proteostasis, highlighting their influence on stem cells. We also examine how mitonuclear interactions contribute to cellular homeostasis, stem cell therapies, and the potential for extending lifespan.

Keywords

aging / fate determination / metabolism / mitochondria / mitochondrial stress / mitonuclear communication / stem cell

Cite this article

Download citation ▾
Baozhou Peng, Yaning Wang, Hongbo Zhang. Mitonuclear Communication in Stem Cell Function. Cell Proliferation, 2025, 58(5): e13796 DOI:10.1111/cpr.13796

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. W. Gray, G. Burger, and B. F. Lang, “The Origin and Early Evolution of Mitochondria,” Genome Biology 2, no. 6 (2001): S1018.

[2]

T. R. Mercer, S. Neph, M. E. Dinger, et al., “The Human Mitochondrial Transcriptome,” Cell 146, no. 4 (2011): 645-658.

[3]

A. Chacinska, C. M. Koehler, D. Milenkovic, et al., “Importing Mitochondrial Proteins: Machineries and Mechanisms,” Cell 138, no. 4 (2009): 628-644.

[4]

S. Rath, R. Sharma, R. Gupta, et al., “MitoCarta3.0: An Updated Mitochondrial Proteome Now With Sub-Organelle Localization and Pathway Annotations,” Nucleic Acids Research 49, no. D1 (2021): D1541-D1547.

[5]

O. Matilainen, P. M. Quiros, and J. Auwerx, “Mitochondria and Epigenetics—Crosstalk in Homeostasis and Stress,” Trends in Cell Biology 27, no. 6 (2017): 453-463.

[6]

P. M. Quiros, A. Mottis, and J. Auwerx, “Mitonuclear Communication in Homeostasis and Stress,” Nature Reviews. Molecular Cell Biology 17, no. 4 (2016): 213-226.

[7]

J. A. Knoblich, “Mechanisms of Asymmetric Stem Cell Division,” Cell 132, no. 4 (2008): 583-597.

[8]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12926.

[9]

T. H. Cheung and T. A. Rando, “Molecular Regulation of Stem Cell Quiescence,” Nature Reviews. Molecular Cell Biology 14, no. 6 (2013): 329-340.

[10]

L. Garcia-Prat, P. Sousa-Victor, and P. Munoz-Canoves, “Proteostatic and Metabolic Control of Stemness,” Cell Stem Cell 20, no. 5 (2017): 593-608.

[11]

A. Bahat and A. Gross, “Mitochondrial Plasticity in Cell Fate Regulation,” Journal of Biological Chemistry 294, no. 38 (2019): 13852-13863.

[12]

R. A. Signer and S. J. Morrison, “Mechanisms That Regulate Stem Cell Aging and Life Span,” Cell Stem Cell 12, no. 2 (2013): 152-165.

[13]

G. Van Zant and Y. Liang, “The Role of Stem Cells in Aging,” Experimental Hematology 31, no. 8 (2003): 659-672.

[14]

C. Lopez-Otin, M. A. Blasco, L. Partridge, et al., “The Hallmarks of Aging,” Cell 153, no. 6 (2013): 1194-1217.

[15]

C. Lopez-Otin, M. A. Blasco, L. Partridge, et al., “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 2 (2023): 243-278.

[16]

M. J. Evans and R. C. Scarpulla, “Both Upstream and Intron Sequence Elements Are Required for Elevated Expression of the Rat Somatic Cytochrome c Gene in COS-1 Cells,” Molecular and Cellular Biology 8, no. 1 (1988): 35-41.

[17]

M. J. Evans and R. C. Scarpulla, “Interaction of Nuclear Factors With Multiple Sites in the Somatic Cytochrome c Promoter. Characterization of Upstream NRF-1, ATF, and Intron Sp1 Recognition Sequences,” Journal of Biological Chemistry 264, no. 24 (1989): 14361-14368.

[18]

S. Gugneja, C. M. Virbasius, and R. C. Scarpulla, “Nuclear Respiratory Factors 1 and 2 Utilize Similar Glutamine-Containing Clusters of Hydrophobic Residues to Activate Transcription,” Molecular and Cellular Biology 16, no. 10 (1996): 5708-5716.

[19]

R. C. Scarpulla, “Nuclear Activators and Coactivators in Mammalian Mitochondrial Biogenesis,” Biochimica et Biophysica Acta 1576, no. 1-2 (2002): 1-14.

[20]

J. V. Virbasius and R. C. Scarpulla, “Activation of the Human Mitochondrial Transcription Factor A Gene by Nuclear Respiratory Factors: A Potential Regulatory Link Between Nuclear and Mitochondrial Gene Expression in Organelle Biogenesis,” Proceedings of the National Academy of Sciences of the United States of America 91, no. 4 (1994): 1309-1313.

[21]

G. I. Aizencang, D. F. Bishop, D. Forrest, et al., “Uroporphyrinogen III Synthase. An Alternative Promoter Controls Erythroid-Specific Expression in the Murine Gene,” Journal of Biological Chemistry 275, no. 4 (2000): 2295-2304.

[22]

R. C. Scarpulla, “Nuclear Control of Respiratory Gene Expression in Mammalian Cells,” Journal of Cellular Biochemistry 97, no. 4 (2006): 673-683.

[23]

L. Huo and R. C. Scarpulla, “Mitochondrial DNA Instability and Peri-Implantation Lethality Associated With Targeted Disruption of Nuclear Respiratory Factor 1 in Mice,” Molecular and Cellular Biology 21, no. 2 (2001): 644-654.

[24]

H. Cam, E. Balciunaite, A. Blais, et al., “A Common Set of Gene Regulatory Networks Links Metabolism and Growth Inhibition,” Molecular Cell 16, no. 3 (2004): 399-411.

[25]

S. Gugneja and R. C. Scarpulla, “Serine Phosphorylation Within a Concise Amino-Terminal Domain in Nuclear Respiratory Factor 1 Enhances DNA Binding,” Journal of Biological Chemistry 272, no. 30 (1997): 18732-18739.

[26]

R. P. Herzig, S. Scacco, and R. C. Scarpulla, “Sequential Serum-Dependent Activation of CREB and NRF-1 Leads to Enhanced Mitochondrial Respiration Through the Induction of Cytochrome c,” Journal of Biological Chemistry 275, no. 17 (2000): 13134-13141.

[27]

A. L'Honore, P. H. Commere, J. F. Ouimette, et al., “Redox Regulation by Pitx2 and Pitx3 Is Critical for Fetal Myogenesis,” Developmental Cell 29, no. 4 (2014): 392-405.

[28]

M. Cui, A. Atmanli, M. G. Morales, et al., “Nrf1 Promotes Heart Regeneration and Repair by Regulating Proteostasis and Redox Balance,” Nature Communications 12, no. 1 (2021): 5270.

[29]

P. Chen, X. Cai, Y. Yang, et al., “Nuclear Respiratory Factor-1 (NRF-1) Regulates Transcription of the CXC Receptor 4 (CXCR4) in the Rat Retina,” Investigative Ophthalmology & Visual Science 58, no. 11 (2017): 4662-4669.

[30]

J. K. Das, Q. Felty, R. Poppiti, et al., “Nuclear Respiratory Factor 1 Acting as an Oncoprotein Drives Estrogen-Induced Breast Carcinogenesis,” Cells 7, no. 12 (2018): 234.

[31]

C. Thompson, G. Macdonald, and C. R. Mueller, “Decreased Expression of BRCA1 in SK-BR-3 Cells Is the Result of Aberrant Activation of the GABP Beta Promoter by an NRF-1-Containing Complex,” Molecular Cancer 10 (2011): 62.

[32]

M. Mohrin, J. Shin, Y. Liu, et al., “Stem Cell Aging. A Mitochondrial UPR-Mediated Metabolic Checkpoint Regulates Hematopoietic Stem Cell Aging,” Science 347, no. 6228 (2015): 1374-1377.

[33]

K. H. Wrighton, “Stem Cells: SIRT7, the UPR and HSC Ageing,” Nature Reviews. Molecular Cell Biology 16, no. 5 (2015): 266-267.

[34]

X. Nan, B. Zhang, J. Hao, et al., “Requirements for Human Haematopoietic Stem/Progenitor Cells,” Cell Proliferation 55, no. 4 (2022): e13152.

[35]

P. Wang, J. Su, J. Wang, et al., “NRF1 Promotes Primordial Germ Cell Development, Proliferation and Survival,” Cell Proliferation 57, no. 1 (2024): e13533.

[36]

S. Liu, K. A. Aldinger, C. V. Cheng, et al., “NRF1 Association With AUTS2-Polycomb Mediates Specific Gene Activation in the Brain,” Molecular Cell 81, no. 22 (2021): 4663-4676.

[37]

J. V. Virbasius and R. C. Scarpulla, “Transcriptional Activation Through ETS Domain Binding Sites in the Cytochrome c Oxidase Subunit IV Gene,” Molecular and Cellular Biology 11, no. 11 (1991): 5631-5638.

[38]

R. S. Carter, N. K. Bhat, A. Basu, et al., “The Basal Promoter Elements of Murine Cytochrome c Oxidase Subunit IV Gene Consist of Tandemly Duplicated Ets Motifs That Bind to GABP-Related Transcription Factors,” Journal of Biological Chemistry 267, no. 32 (1992): 23418-23426.

[39]

J. V. Virbasius, C. A. Virbasius, and R. C. Scarpulla, “Identity of GABP With NRF-2, a Multisubunit Activator of Cytochrome Oxidase Expression, Reveals a Cellular Role for an ETS Domain Activator of Viral Promoters,” Genes & Development 7, no. 3 (1993): 380-392.

[40]

S. Gugneja, J. V. Virbasius, and R. C. Scarpulla, “Four Structurally Distinct, Non-DNA-Binding Subunits of Human Nuclear Respiratory Factor 2 Share a Conserved Transcriptional Activation Domain,” Molecular and Cellular Biology 15, no. 1 (1995): 102-111.

[41]

K. L. Lamarco and S. L. Mcknight, “Purification of a Set of Cellular Polypeptides That Bind to the Purine-Rich cis-Regulatory Element of Herpes Simplex Virus Immediate Early Genes,” Genes & Development 3, no. 9 (1989): 1372-1383.

[42]

S. Ongwijitwat, H. L. Liang, E. M. Graboyes, et al., “Nuclear Respiratory Factor 2 Senses Changing Cellular Energy Demands and Its Silencing Down-Regulates Cytochrome Oxidase and Other Target Gene mRNAs,” Gene 374 (2006): 39-49.

[43]

S. Ongwijitwat and M. T. Wong-Riley, “Is Nuclear Respiratory Factor 2 a Master Transcriptional Coordinator for All Ten Nuclear-Encoded Cytochrome c Oxidase Subunits in Neurons?,” Gene 360, no. 1 (2005): 65-77.

[44]

N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, “Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators,” Molecular and Cellular Biology 25, no. 4 (2005): 1354-1366.

[45]

H. C. Au and I. E. Scheffler, “Promoter Analysis of the Human Succinate Dehydrogenase Iron-Protein Gene—Both Nuclear Respiratory Factors NRF-1 and NRF-2 Are Required,” European Journal of Biochemistry 251, no. 1-2 (1998): 164-174.

[46]

A. Elbehti-Green, H. C. Au, J. T. Mascarello, et al., “Characterization of the Human SDHC Gene Encoding of the Integral Membrane Proteins of Succinate-Quinone Oxidoreductase in Mitochondria,” Gene 213, no. 1-2 (1998): 133-140.

[47]

H. Hirawake, M. Taniwaki, A. Tamura, et al., “Characterization of the Human SDHD Gene Encoding the Small Subunit of Cytochrome b (cybS) in Mitochondrial Succinate-Ubiquinone Oxidoreductase,” Biochimica et Biophysica Acta 1412, no. 3 (1999): 295-300.

[48]

J. R. Blesa, J. M. Hernandez, and J. Hernandez-Yago, “NRF-2 Transcription Factor Is Essential in Promoting Human Tomm70 Gene Expression,” Mitochondrion 3, no. 5 (2004): 251-259.

[49]

J. R. Blesa and J. Hernandez-Yago, “Distinct Functional Contributions of 2 GABP-NRF-2 Recognition Sites Within the Context of the Human TOMM70 Promoter,” Biochemistry and Cell Biology 84, no. 5 (2006): 813-822.

[50]

J. R. Blesa, J. A. Prieto-Ruiz, J. M. Hernandez, et al., “NRF-2 Transcription Factor Is Required for Human TOMM20 Gene Expression,” Gene 391, no. 1-2 (2007): 198-208.

[51]

S. Ristevski, D. A. O'Leary, A. P. Thornell, et al., “The ETS Transcription Factor GABPalpha Is Essential for Early Embryogenesis,” Molecular and Cellular Biology 24, no. 13 (2004): 5844-5849.

[52]

Z. F. Yang, S. Mott, and A. G. Rosmarin, “The Ets Transcription Factor GABP Is Required for Cell-Cycle Progression,” Nature Cell Biology 9, no. 3 (2007): 339-346.

[53]

K. Kinoshita, H. Ura, T. Akagi, et al., “GABPalpha Regulates Oct-3/4 Expression in Mouse Embryonic Stem Cells,” Biochemical and Biophysical Research Communications 353, no. 3 (2007): 686-691.

[54]

A. Ueda, T. Akagi, and T. Yokota, “GA-Binding Protein Alpha Is Involved in the Survival of Mouse Embryonic Stem Cells,” Stem Cells 35, no. 11 (2017): 2229-2238.

[55]

Z. F. Yang, K. Drumea, J. Cormier, et al., “GABP Transcription Factor Is Required for Myeloid Differentiation, in Part, Through Its Control of Gfi-1 Expression,” Blood 118, no. 8 (2011): 2243-2253.

[56]

T. Ripperger, G. Manukjan, J. Meyer, et al., “The Heteromeric Transcription Factor GABP Activates the ITGAM/CD11b Promoter and Induces Myeloid Differentiation,” Biochimica et Biophysica Acta 1849, no. 9 (2015): 1145-1154.

[57]

S. Yu, K. Cui, R. Jothi, et al., “GABP Controls a Critical Transcription Regulatory Module That Is Essential for Maintenance and Differentiation of Hematopoietic Stem/Progenitor Cells,” Blood 117, no. 7 (2011): 2166-2178.

[58]

S. Yu, X. Jing, J. D. Colgan, et al., “Targeting Tetramer-Forming GABPbeta Isoforms Impairs Self-Renewal of Hematopoietic and Leukemic Stem Cells,” Cell Stem Cell 11, no. 2 (2012): 207-219.

[59]

G. Manukjan, T. Ripperger, L. Venturini, et al., “GABP Is Necessary for Stem/Progenitor Cell Maintenance and Myeloid Differentiation in Human Hematopoiesis and Chronic Myeloid Leukemia,” Stem Cell Research 16, no. 3 (2016): 677-681.

[60]

C. Liu, S. K. Dai, Z. Sun, et al., “GA-Binding Protein GABPbeta1 Is Required for the Proliferation of Neural Stem/Progenitor Cells,” Stem Cell Research 39 (2019): 101501.

[61]

Y. K. Wang, J. Yu, T. T. Zhang, et al., “Human Neural Stem Cells,” Cell Proliferation 57, no. 4 (2024): e13564.

[62]

L. Michalik, J. Auwerx, J. P. Berger, et al., “International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors,” Pharmacological Reviews 58, no. 4 (2006): 726-741.

[63]

J. Uppenberg, C. Svensson, M. Jaki, et al., “Crystal Structure of the Ligand Binding Domain of the Human Nuclear Receptor PPARgamma,” Journal of Biological Chemistry 273, no. 47 (1998): 31108-31112.

[64]

P. Lefebvre, G. Chinetti, J. C. Fruchart, et al., “Sorting Out the Roles of PPAR Alpha in Energy Metabolism and Vascular Homeostasis,” Journal of Clinical Investigation 116, no. 3 (2006): 571-580.

[65]

S. Mandard, M. Muller, and S. Kersten, “Peroxisome Proliferator-Activated Receptor Alpha Target Genes,” Cellular and Molecular Life Sciences 61, no. 4 (2004): 393-416.

[66]

M. Rakhshandehroo, B. Knoch, M. Muller, et al., “Peroxisome Proliferator-Activated Receptor Alpha Target Genes,” PPAR Research 2010 (2010): 1-20.

[67]

D. G. Cotter, B. Ercal, X. Huang, et al., “Ketogenesis Prevents Diet-Induced Fatty Liver Injury and Hyperglycemia,” Journal of Clinical Investigation 124, no. 12 (2014): 5175-5190.

[68]

Y. Sumida and M. Yoneda, “Current and Future Pharmacological Therapies for NAFLD/NASH,” Journal of Gastroenterology 53, no. 3 (2018): 362-376.

[69]

C. J. Chou, M. Haluzik, C. Gregory, et al., “WY14,643, a Peroxisome Proliferator-Activated Receptor Alpha (PPARalpha) Agonist, Improves Hepatic and Muscle Steatosis and Reverses Insulin Resistance in Lipoatrophic A-ZIP/F-1 Mice,” Journal of Biological Chemistry 277, no. 27 (2002): 24484-24489.

[70]

H. Kim, M. Haluzik, Z. Asghar, et al., “Peroxisome Proliferator-Activated Receptor-Alpha Agonist Treatment in a Transgenic Model of Type 2 Diabetes Reverses the Lipotoxic State and Improves Glucose Homeostasis,” Diabetes 52, no. 7 (2003): 1770-1778.

[71]

F. Villarroya, R. Iglesias, and M. Giralt, “PPARs in the Control of Uncoupling Proteins Gene Expression,” PPAR Research 2007 (2007): 74364.

[72]

H. Y. Lee, X. Gao, M. I. Barrasa, et al., “PPAR-Alpha and Glucocorticoid Receptor Synergize to Promote Erythroid Progenitor Self-Renewal,” Nature 522, no. 7557 (2015): 474-477.

[73]

S. Z. Chen, Y. Ling, L. X. Yu, et al., “4-Phenylbutyric Acid Promotes Hepatocellular Carcinoma via Initiating Cancer Stem Cells Through Activation of PPAR-Alpha,” Clinical and Translational Medicine 11, no. 4 (2021): e379.

[74]

Z. Peng, J. Wu, S. Hu, et al., “Requirments for Primary Human Hepatocyte,” Cell Proliferation 55, no. 4 (2022): e13147.

[75]

G. Kim, Z. Chen, J. Li, et al., “Gut-Liver Axis Calibrates Intestinal Stem Cell Fitness,” Cell 187, no. 4 (2024): 914-930.

[76]

Y. X. Wang, C. H. Lee, S. Tiep, et al., “Peroxisome-Proliferator-Activated Receptor Delta Activates Fat Metabolism to Prevent Obesity,” Cell 113, no. 2 (2003): 159-170.

[77]

S. Liu, B. Hatano, M. Zhao, et al., “Role of Peroxisome Proliferator-Activated Receptor {Delta}/{Beta} in Hepatic Metabolic Regulation,” Journal of Biological Chemistry 286, no. 2 (2011): 1237-1247.

[78]

Q. Xie, T. Tian, Z. Chen, et al., “Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation,” Current Stem Cell Research & Therapy 11, no. 3 (2016): 290-298.

[79]

J. M. Peters, S. S. Lee, W. Li, et al., “Growth, Adipose, Brain, and Skin Alterations Resulting From Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor Beta(Delta),” Molecular and Cellular Biology 20, no. 14 (2000): 5119-5128.

[80]

K. Nadra, S. I. Anghel, E. Joye, et al., “Differentiation of Trophoblast Giant Cells and Their Metabolic Functions Are Dependent on Peroxisome Proliferator-Activated Receptor Beta/Delta,” Molecular and Cellular Biology 26, no. 8 (2006): 3266-3281.

[81]

Y. Barak, D. Liao, W. He, et al., “Effects of Peroxisome Proliferator-Activated Receptor Delta on Placentation, Adiposity, and Colorectal Cancer,” Proceedings of the National Academy of Sciences of the United States of America 99, no. 1 (2002): 303-308.

[82]

F. Varnat, B. B. Heggeler, P. Grisel, et al., “PPARbeta/Delta Regulates Paneth Cell Differentiation via Controlling the Hedgehog Signaling Pathway,” Gastroenterology 131, no. 2 (2006): 538-553.

[83]

L. Michalik, B. Desvergne, N. S. Tan, et al., “Impaired Skin Wound Healing in Peroxisome Proliferator-Activated Receptor (PPAR)alpha and PPARbeta Mutant Mice,” Journal of Cell Biology 154, no. 4 (2001): 799-814.

[84]

N. Di-Poi, N. S. Tan, L. Michalik, et al., “Antiapoptotic Role of PPARbeta in Keratinocytes via Transcriptional Control of the Akt1 Signaling Pathway,” Molecular Cell 10, no. 4 (2002): 721-733.

[85]

W. Wahli, “Peroxisome Proliferator-Activated Receptors (PPARs): From Metabolic Control to Epidermal Wound Healing,” Swiss Medical Weekly 132, no. 7-8 (2002): 83-91.

[86]

S. Beyaz, M. D. Mana, J. Roper, et al., “High-Fat Diet Enhances Stemness and Tumorigenicity of Intestinal Progenitors,” Nature 531, no. 7592 (2016): 53-58.

[87]

K. Ito, A. Carracedo, D. Weiss, et al., “A PML-PPAR-Delta Pathway for Fatty Acid Oxidation Regulates Hematopoietic Stem Cell Maintenance,” Nature Medicine 18, no. 9 (2012): 1350-1358.

[88]

D. Y. Zhu, J. Y. Wu, H. Li, et al., “PPAR-beta Facilitating Maturation of Hepatic-Like Tissue Derived From Mouse Embryonic Stem Cells Accompanied by Mitochondriogenesis and Membrane Potential Retention,” Journal of Cellular Biochemistry 109, no. 3 (2010): 498-508.

[89]

F. Djouad, N. Ipseiz, P. Luz-Crawford, et al., “PPARbeta/Delta: A Master Regulator of Mesenchymal Stem Cell Functions,” Biochimie 136 (2017): 55-58.

[90]

X. Chen, J. Huang, J. Wu, et al., “Human Mesenchymal Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13141.

[91]

M. Xu, X. Chen, D. Chen, et al., “FoxO1: A Novel Insight Into Its Molecular Mechanisms in the Regulation of Skeletal Muscle Differentiation and Fiber Type Specification,” Oncotarget 8, no. 6 (2017): 10662-10674.

[92]

C. Giordano, A. S. Rousseau, N. Wagner, et al., “Peroxisome Proliferator-Activated Receptor Beta Activation Promotes Myonuclear Accretion in Skeletal Muscle of Adult and Aged Mice,” Pflügers Archiv 458, no. 5 (2009): 901-913.

[93]

S. J. Lee, G. Y. Go, M. Yoo, et al., “Peroxisome Proliferator-Activated Receptor Beta/Delta (PPARbeta/Delta) Activates Promyogenic Signaling Pathways, Thereby Promoting Myoblast Differentiation,” Biochemical and Biophysical Research Communications 470, no. 1 (2016): 157-162.

[94]

P. Chandrashekar, R. Manickam, X. Ge, et al., “Inactivation of PPARbeta/Delta Adversely Affects Satellite Cells and Reduces Postnatal Myogenesis,” American Journal of Physiology. Endocrinology and Metabolism 309, no. 2 (2015): E122-E131.

[95]

A. R. Angione, C. Jiang, D. Pan, et al., “PPARdelta Regulates Satellite Cell Proliferation and Skeletal Muscle Regeneration,” Skeletal Muscle 1, no. 1 (2011): 33.

[96]

M. Ahmadian, J. M. Suh, N. Hah, et al., “PPARgamma Signaling and Metabolism: The Good, the Bad and the Future,” Nature Medicine 19, no. 5 (2013): 557-566.

[97]

J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth, et al., “Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance,” Nature 447, no. 7148 (2007): 1116-1120.

[98]

A. L. Hevener, J. M. Olefsky, D. Reichart, et al., “Macrophage PPAR Gamma Is Required for Normal Skeletal Muscle and Hepatic Insulin Sensitivity and Full Antidiabetic Effects of Thiazolidinediones,” Journal of Clinical Investigation 117, no. 6 (2007): 1658-1669.

[99]

I. Szatmari, E. Rajnavolgyi, and L. Nagy, “PPARgamma, a Lipid-Activated Transcription Factor as a Regulator of Dendritic Cell Function,” Annals of the New York Academy of Sciences 1088 (2006): 207-218.

[100]

L. Szeles, D. Torocsik, and L. Nagy, “PPARgamma in Immunity and Inflammation: Cell Types and Diseases,” Biochimica et Biophysica Acta 1771, no. 8 (2007): 1014-1030.

[101]

H. Koutnikova, T. A. Cock, M. Watanabe, et al., “Compensation by the Muscle Limits the Metabolic Consequences of Lipodystrophy in PPAR Gamma Hypomorphic Mice,” Proceedings of the National Academy of Sciences of the United States of America 100, no. 24 (2003): 14457-14462.

[102]

T. Imai, R. Takakuwa, S. Marchand, et al., “Peroxisome Proliferator-Activated Receptor Gamma Is Required in Mature White and Brown Adipocytes for Their Survival in the Mouse,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 13 (2004): 4543-4547.

[103]

M. Lavasani, A. R. Robinson, A. Lu, et al., “Muscle-Derived Stem/Progenitor Cell Dysfunction Limits Healthspan and Lifespan in a Murine Progeria Model,” Nature Communications 3 (2012): 608.

[104]

E. J. Moerman, K. Teng, D. A. Lipschitz, et al., “Aging Activates Adipogenic and Suppresses Osteogenic Programs in Mesenchymal Marrow Stroma/Stem Cells: The Role of PPAR-gamma2 Transcription Factor and TGF-beta/BMP Signaling Pathways,” Aging Cell 3, no. 6 (2004): 379-389.

[105]

W. Wei and Y. Wan, “Thiazolidinediones on PPARgamma: The Roles in Bone Remodeling,” PPAR Research 2011 (2011): 867180.

[106]

B. Guo, X. Huang, M. R. Lee, et al., “Antagonism of PPAR-Gamma Signaling Expands Human Hematopoietic Stem and Progenitor Cells by Enhancing Glycolysis,” Nature Medicine 24, no. 3 (2018): 360-367.

[107]

I. Piccini, L. Brunken, J. Cheret, et al., “Peroxisome Proliferator-Activated Receptor-Gamma Signalling Protects Hair Follicle Stem Cells From Chemotherapy-Induced Apoptosis and Epithelial-Mesenchymal Transition,” British Journal of Dermatology 186, no. 1 (2022): 129-141.

[108]

P. Karnik, Z. Tekeste, T. S. Mccormick, et al., “Hair Follicle Stem Cell-Specific PPARgamma Deletion Causes Scarring Alopecia,” Journal of Investigative Dermatology 129, no. 5 (2009): 1243-1257.

[109]

T. Lan, F. Bi, Y. Xu, et al., “PPAR-Gamma Activation Promotes Xenogenic Bioroot Regeneration by Attenuating the Xenograft Induced-Oxidative Stress,” International Journal of Oral Science 15, no. 1 (2023): 10.

[110]

E. Piccinin, G. Villani, and A. Moschetta, “Metabolic Aspects in NAFLD, NASH and Hepatocellular Carcinoma: The Role of PGC1 Coactivators,” Nature Reviews. Gastroenterology & Hepatology 16, no. 3 (2019): 160-174.

[111]

R. C. Scarpulla, R. B. Vega, and D. P. Kelly, “Transcriptional Integration of Mitochondrial Biogenesis,” Trends in Endocrinology and Metabolism 23, no. 9 (2012): 459-466.

[112]

P. Puigserver, Z. Wu, C. W. Park, et al., “A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis,” Cell 92, no. 6 (1998): 829-839.

[113]

W. Di, J. Lv, S. Jiang, et al., “PGC-1: The Energetic Regulator in Cardiac Metabolism,” Current Issues in Molecular Biology 28 (2018): 29-46.

[114]

E. Piccinin, A. M. Sardanelli, P. Seibel, et al., “PGC-1s in the Spotlight With Parkinson's Disease,” International Journal of Molecular Sciences 22, no. 7 (2021): 3487.

[115]

S. N. Schreiber, R. Emter, M. B. Hock, et al., “The Estrogen-Related Receptor Alpha (ERRalpha) Functions in PPARgamma Coactivator 1alpha (PGC-1alpha)-Induced Mitochondrial Biogenesis,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 17 (2004): 6472-6477.

[116]

Z. Wu, P. Puigserver, U. Andersson, et al., “Mechanisms Controlling Mitochondrial Biogenesis and Respiration Through the Thermogenic Coactivator PGC-1,” Cell 98, no. 1 (1999): 115-124.

[117]

R. C. Scarpulla, “Nuclear Control of Respiratory Chain Expression by Nuclear Respiratory Factors and PGC-1-Related Coactivator,” Annals of the New York Academy of Sciences 1147 (2008): 321-334.

[118]

N. G. Larsson, J. Wang, H. Wilhelmsson, et al., “Mitochondrial Transcription Factor A Is Necessary for mtDNA Maintenance and Embryogenesis in Mice,” Nature Genetics 18, no. 3 (1998): 231-236.

[119]

J. St-Pierre, S. Drori, M. Uldry, et al., “Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators,” Cell 127, no. 2 (2006): 397-408.

[120]

I. Suntar, A. Sureda, T. Belwal, et al., “Natural Products, PGC-1 Alpha, and Duchenne Muscular Dystrophy,” Acta Pharmaceutica Sinica B 10, no. 5 (2020): 734-745.

[121]

J. J. Lehman, P. M. Barger, A. Kovacs, et al., “Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Promotes Cardiac Mitochondrial Biogenesis,” Journal of Clinical Investigation 106, no. 7 (2000): 847-856.

[122]

L. K. Russell, C. M. Mansfield, J. J. Lehman, et al., “Cardiac-Specific Induction of the Transcriptional Coactivator Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1alpha Promotes Mitochondrial Biogenesis and Reversible Cardiomyopathy in a Developmental Stage-Dependent Manner,” Circulation Research 94, no. 4 (2004): 525-533.

[123]

T. C. Leone, J. J. Lehman, B. N. Finck, et al., “PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis,” PLoS Biology 3, no. 4 (2005): e101.

[124]

S. Gundewar, J. W. Calvert, S. Jha, et al., “Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure,” Circulation Research 104, no. 3 (2009): 403-411.

[125]

M. Scharf, S. Neef, R. Freund, et al., “Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition to Modulate Skeletal Muscle and Cardiomyocyte Function,” Molecular and Cellular Biology 33, no. 13 (2013): 2586-2602.

[126]

C. Canto, Z. Gerhart-Hines, J. N. Feige, et al., “AMPK Regulates Energy Expenditure by Modulating NAD+ Metabolism and SIRT1 Activity,” Nature 458, no. 7241 (2009): 1056-1060.

[127]

S. Jiang, T. Li, Z. Yang, et al., “AMPK Orchestrates an Elaborate Cascade Protecting Tissue From Fibrosis and Aging,” Ageing Research Reviews 38 (2017): 18-27.

[128]

X. Li, B. Monks, Q. Ge, et al., “Akt/PKB Regulates Hepatic Metabolism by Directly Inhibiting PGC-1alpha Transcription Coactivator,” Nature 447, no. 7147 (2007): 1012-1016.

[129]

T. J. Kelly, C. Lerin, W. Haas, et al., “GCN5-Mediated Transcriptional Control of the Metabolic Coactivator PGC-1beta Through Lysine Acetylation,” Journal of Biological Chemistry 284, no. 30 (2009): 19945-19952.

[130]

J. S. Trausch-Azar, M. Abed, A. Orian, et al., “Isoform-Specific SCF(Fbw7) Ubiquitination Mediates Differential Regulation of PGC-1alpha,” Journal of Cellular Physiology 230, no. 4 (2015): 842-852.

[131]

M. Wang, G. Yang, X. Jiang, et al., “Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1alpha (PGC-1alpha) Regulates the Expression of B-Cell Lymphoma/Leukemia-2 (Bcl-2) and Promotes the Survival of Mesenchymal Stem Cells (MSCs) via PGC-1alpha/ERRalpha Interaction in the Absence of Serum, Hypoxia, and High Glucose Conditions,” Medical Science Monitor 23 (2017): 3451-3460.

[132]

I. Dinulovic, R. Furrer, M. Beer, et al., “Muscle PGC-1alpha Modulates Satellite Cell Number and Proliferation by Remodeling the Stem Cell Niche,” Skeletal Muscle 6, no. 1 (2016): 39.

[133]

D. Haralampieva, S. Salemi, T. Betzel, et al., “Injected Human Muscle Precursor Cells Overexpressing PGC-1alpha Enhance Functional Muscle Regeneration After Trauma,” Stem Cells International 2018 (2018): 4658503.

[134]

R. Mills, H. Taylor-Weiner, J. C. Correia, et al., “Neurturin Is a PGC-1alpha1-Controlled Myokine That Promotes Motor Neuron Recruitment and Neuromuscular Junction Formation,” Molecular Metabolism 7 (2018): 12-22.

[135]

B. Yu, L. Huo, Y. Liu, et al., “PGC-1alpha Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ,” Cell Stem Cell 23, no. 2 (2018): 193-209.

[136]

J. H. Bae, A. Jo, S. C. Cho, et al., “Farnesol Prevents Aging-Related Muscle Weakness in Mice Through Enhanced Farnesylation of Parkin-Interacting Substrate,” Science Translational Medicine 15, no. 711 (2023): h3489.

[137]

Y. Liu, H. Bai, F. Guo, et al., “PGC-1alpha Activator ZLN005 Promotes Maturation of Cardiomyocytes Derived From Human Embryonic Stem Cells,” Aging (Albany NY) 12, no. 8 (2020): 7411-7430.

[138]

S. A. Murphy, M. Miyamoto, A. Kervadec, et al., “PGC1/PPAR Drive Cardiomyocyte Maturation at Single Cell Level via YAP1 and SF3B2,” Nature Communications 12, no. 1 (2021): 1648.

[139]

J. Hao, J. Cao, L. Wang, et al., “Requirements for Human Embryonic Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12925.

[140]

M. Yu, W. Lei, J. Cao, et al., “Requirements for Human Cardiomyocytes,” Cell Proliferation 55, no. 4 (2022): e13150.

[141]

P. Sancho, E. Burgos-Ramos, A. Tavera, et al., “MYC/PGC-1alpha Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells,” Cell Metabolism 22, no. 4 (2015): 590-605.

[142]

J. M. Chambers, S. J. Poureetezadi, A. Addiego, et al., “ppargc1a Controls Nephron Segmentation During Zebrafish Embryonic Kidney Ontogeny,” eLife 7 (2018): e40266.

[143]

J. M. Chambers, A. Addiego, A. L. Flores-Mireles, et al., “Ppargc1a Controls Ciliated Cell Development by Regulating Prostaglandin Biosynthesis,” Cell Reports 33, no. 6 (2020): 108370.

[144]

M. Rera, S. Bahadorani, J. Cho, et al., “Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog,” Cell Metabolism 14, no. 5 (2011): 623-634.

[145]

J. Lin, P. Puigserver, J. Donovan, et al., “Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1beta (PGC-1beta), a Novel PGC-1-Related Transcription Coactivator Associated With Host Cell Factor,” Journal of Biological Chemistry 277, no. 3 (2002): 1645-1648.

[146]

D. Kressler, S. N. Schreiber, D. Knutti, et al., “The PGC-1-Related Protein PERC Is a Selective Coactivator of Estrogen Receptor Alpha,” Journal of Biological Chemistry 277, no. 16 (2002): 13918-13925.

[147]

C. J. Lelliott, G. Medina-Gomez, N. Petrovic, et al., “Ablation of PGC-1beta Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance,” PLoS Biology 4, no. 11 (2006): e369.

[148]

L. Lai, T. C. Leone, C. Zechner, et al., “Transcriptional Coactivators PGC-1alpha and PGC-Lbeta Control Overlapping Programs Required for Perinatal Maturation of the Heart,” Genes & Development 22, no. 14 (2008): 1948-1961.

[149]

J. Lin, H. Wu, P. T. Tarr, et al., “Transcriptional Co-Activator PGC-1 Alpha Drives the Formation of Slow-Twitch Muscle Fibres,” Nature 418, no. 6899 (2002): 797-801.

[150]

Z. Arany, N. Lebrasseur, C. Morris, et al., “The Transcriptional Coactivator PGC-1beta Drives the Formation of Oxidative Type IIX Fibers in Skeletal Muscle,” Cell Metabolism 5, no. 1 (2007): 35-46.

[151]

J. Lin, R. Yang, P. T. Tarr, et al., “Hyperlipidemic Effects of Dietary Saturated Fats Mediated Through PGC-1beta Coactivation of SREBP,” Cell 120, no. 2 (2005): 261-273.

[152]

S. Li and J. D. Lin, “Transcriptional Control of Circadian Metabolic Rhythms in the Liver,” Diabetes, Obesity & Metabolism 17, no. Suppl 1 (2015): 33-38.

[153]

J. Sonoda, I. R. Mehl, L. W. Chong, et al., “PGC-1beta Controls Mitochondrial Metabolism to Modulate Circadian Activity, Adaptive Thermogenesis, and Hepatic Steatosis,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 12 (2007): 5223-5228.

[154]

C. Liu, S. Li, T. Liu, et al., “Transcriptional Coactivator PGC-1alpha Integrates the Mammalian Clock and Energy Metabolism,” Nature 447, no. 7143 (2007): 477-481.

[155]

J. Shintaku, J. M. Peterson, E. E. Talbert, et al., “MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively With Alternative NF-kappaB,” Cell Reports 17, no. 2 (2016): 514-526.

[156]

T. Sen, J. Chen, and S. Singbrant, “Decreased PGC1beta Expression Results in Disrupted Human Erythroid Differentiation, Impaired Hemoglobinization and Cell Cycle Exit,” Scientific Reports 11, no. 1 (2021): 17129.

[157]

E. Sahin, S. Colla, M. Liesa, et al., “Telomere Dysfunction Induces Metabolic and Mitochondrial Compromise,” Nature 470, no. 7334 (2011): 359-365.

[158]

J. Moslehi, R. A. Depinho, and E. Sahin, “Telomeres and Mitochondria in the Aging Heart,” Circulation Research 110, no. 9 (2012): 1226-1237.

[159]

U. Andersson and R. C. Scarpulla, “Pgc-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells,” Molecular and Cellular Biology 21, no. 11 (2001): 3738-3749.

[160]

K. Vercauteren, N. Gleyzer, and R. C. Scarpulla, “PGC-1-Related Coactivator Complexes With HCF-1 and NRF-2beta in Mediating NRF-2(GABP)-Dependent Respiratory Gene Expression,” Journal of Biological Chemistry 283, no. 18 (2008): 12102-12111.

[161]

K. Vercauteren, R. A. Pasko, N. Gleyzer, et al., “PGC-1-Related Coactivator: Immediate Early Expression and Characterization of a CREB/NRF-1 Binding Domain Associated With Cytochrome c Promoter Occupancy and Respiratory Growth,” Molecular and Cellular Biology 26, no. 20 (2006): 7409-7419.

[162]

K. Vercauteren, N. Gleyzer, and R. C. Scarpulla, “Short Hairpin RNA-Mediated Silencing of PRC (PGC-1-Related Coactivator) Results in a Severe Respiratory Chain Deficiency Associated With the Proliferation of Aberrant Mitochondria,” Journal of Biological Chemistry 284, no. 4 (2009): 2307-2319.

[163]

M. Raharijaona, S. Le Pennec, J. Poirier, et al., “PGC-1-Related Coactivator Modulates Mitochondrial-Nuclear Crosstalk Through Endogenous Nitric Oxide in a Cellular Model of Oncocytic Thyroid Tumours,” PLoS One 4, no. 11 (2009): e7964.

[164]

N. Gleyzer and R. C. Scarpulla, “PGC-1-Related Coactivator (PRC), a Sensor of Metabolic Stress, Orchestrates a Redox-Sensitive Program of Inflammatory Gene Expression,” Journal of Biological Chemistry 286, no. 46 (2011): 39715-39725.

[165]

W. P. Vermeij and C. Backendorf, “Skin Cornification Proteins Provide Global Link Between ROS Detoxification and Cell Migration During Wound Healing,” PLoS One 5, no. 8 (2010): e11957.

[166]

W. P. Vermeij, A. Alia, and C. Backendorf, “ROS Quenching Potential of the Epidermal Cornified Cell Envelope,” Journal of Investigative Dermatology 131, no. 7 (2011): 1435-1441.

[167]

S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, Inflammation, and Cancer,” Cell 140, no. 6 (2010): 883-899.

[168]

A. V. Orjalo, D. Bhaumik, B. K. Gengler, et al., “Cell Surface-Bound IL-1alpha Is an Upstream Regulator of the Senescence-Associated IL-6/IL-8 Cytokine Network,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 40 (2009): 17031-17036.

[169]

X. He, C. Sun, F. Wang, et al., “Peri-Implantation Lethality in Mice Lacking the PGC-1-Related Coactivator Protein,” Developmental Dynamics 241, no. 5 (2012): 975-983.

[170]

S. Basu, “A Complex Interplay Between PGC-1 Co-Activators and mTORC1 Regulates Hematopoietic Recovery Following 5-Fluorouracil Treatment,” Stem Cell Research 12, no. 1 (2014): 178-193.

[171]

S. M. Jazwinski, “The Retrograde Response: When Mitochondrial Quality Control Is Not Enough,” Biochimica et Biophysica Acta 1833, no. 2 (2013): 400-409.

[172]

Z. Liu and R. A. Butow, “Mitochondrial Retrograde Signaling,” Annual Review of Genetics 40 (2006): 159-185.

[173]

T. Sekito, J. Thornton, and R. A. Butow, “Mitochondria-to-Nuclear Signaling Is Regulated by the Subcellular Localization of the Transcription Factors Rtg1p and Rtg3p,” Molecular Biology of the Cell 11, no. 6 (2000): 2103-2115.

[174]

S. M. Jazwinski and A. Kriete, “The Yeast Retrograde Response as a Model of Intracellular Signaling of Mitochondrial Dysfunction,” Frontiers in Physiology 3 (2012): 139.

[175]

C. B. Edwards, N. Copes, A. G. Brito, et al., “Malate and Fumarate Extend Lifespan in Caenorhabditis elegans,” PLoS One 8, no. 3 (2013): e58345.

[176]

R. Friis, J. P. Glaves, T. Huan, et al., “Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells,” Cell Reports 7, no. 2 (2014): 565-574.

[177]

G. Heeren, M. Rinnerthaler, P. Laun, et al., “The Mitochondrial Ribosomal Protein of the Large Subunit, Afo1p, Determines Cellular Longevity Through Mitochondrial Back-Signaling via TOR1,” Aging (Albany NY) 1, no. 7 (2009): 622-636.

[178]

A. Caballero, A. Ugidos, B. Liu, et al., “Absence of Mitochondrial Translation Control Proteins Extends Life Span by Activating Sirtuin-Dependent Silencing,” Molecular Cell 42, no. 3 (2011): 390-400.

[179]

D. F. Egan, D. B. Shackelford, M. M. Mihaylova, et al., “Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy,” Science 331, no. 6016 (2011): 456-461.

[180]

C. Lerner, A. Bitto, D. Pulliam, et al., “Reduced Mammalian Target of Rapamycin Activity Facilitates Mitochondrial Retrograde Signaling and Increases Life Span in Normal Human Fibroblasts,” Aging Cell 12, no. 6 (2013): 966-977.

[181]

J. English, J. M. Son, M. D. Cardamone, et al., “Decoding the Rosetta Stone of Mitonuclear Communication,” Pharmacological Research 161 (2020): 105161.

[182]

T. L. Merry and M. Ristow, “Mitohormesis in Exercise Training,” Free Radical Biology & Medicine 98 (2016): 123-130.

[183]

D. Harman, “Origin and Evolution of the Free Radical Theory of Aging: A Brief Personal History, 1954-2009,” Biogerontology 10, no. 6 (2009): 773-781.

[184]

M. Schieber and N. S. Chandel, “ROS Function in Redox Signaling and Oxidative Stress,” Current Biology 24, no. 10 (2014): R453-R462.

[185]

Y. Keisari, L. Braun, and E. Flescher, “The Oxidative Burst and Related Phenomena in Mouse Macrophages Elicited by Different Sterile Inflammatory Stimuli,” Immunobiology 165, no. 1 (1983): 78-89.

[186]

K. K. Griendling, D. Sorescu, B. Lassegue, et al., “Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology,” Arteriosclerosis, Thrombosis, and Vascular Biology 20, no. 10 (2000): 2175-2183.

[187]

G. S. Shadel and T. L. Horvath, “Mitochondrial ROS Signaling in Organismal Homeostasis,” Cell 163, no. 3 (2015): 560-569.

[188]

C. Leloup, C. Magnan, A. Benani, et al., “Mitochondrial Reactive Oxygen Species Are Required for Hypothalamic Glucose Sensing,” Diabetes 55, no. 7 (2006): 2084-2090.

[189]

S. Diano, Z. W. Liu, J. K. Jeong, et al., “Peroxisome Proliferation-Associated Control of Reactive Oxygen Species Sets Melanocortin Tone and Feeding in Diet-Induced Obesity,” Nature Medicine 17, no. 9 (2011): 1121-1127.

[190]

J. Pi, Y. Bai, Q. Zhang, et al., “Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion,” Diabetes 56, no. 7 (2007): 1783-1791.

[191]

W. C. Orr and R. S. Sohal, “Extension of Life-Span by Overexpression of Superoxide Dismutase and Catalase in Drosophila melanogaster,” Science 263, no. 5150 (1994): 1128-1130.

[192]

S. Melov, J. Ravenscroft, S. Malik, et al., “Extension of Life-Span With Superoxide Dismutase/Catalase Mimetics,” Science 289, no. 5484 (2000): 1567-1569.

[193]

J. Moskovitz, S. Bar-Noy, W. M. Williams, et al., “Methionine Sulfoxide Reductase (MsrA) is a Regulator of Antioxidant Defense and Lifespan in Mammals,” Proceedings of the National Academy of Sciences of the United States of America 98, no. 23 (2001): 12920-12925.

[194]

D. D. Zhang, “Mechanistic Studies of the Nrf2-Keap1 Signaling Pathway,” Drug Metabolism Reviews 38, no. 4 (2006): 769-789.

[195]

N. S. Chandel, D. S. Mcclintock, C. E. Feliciano, et al., “Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-Inducible Factor-1alpha During Hypoxia: A Mechanism of O2 Sensing,” Journal of Biological Chemistry 275, no. 33 (2000): 25130-25138.

[196]

R. B. Hamanaka and N. S. Chandel, “Mitochondrial Reactive Oxygen Species Regulate Hypoxic Signaling,” Current Opinion in Cell Biology 21, no. 6 (2009): 894-899.

[197]

P. Koivunen, M. Hirsila, A. M. Remes, et al., “Inhibition of Hypoxia-Inducible Factor (HIF) Hydroxylases by Citric Acid Cycle Intermediates: Possible Links Between Cell Metabolism and Stabilization of HIF,” Journal of Biological Chemistry 282, no. 7 (2007): 4524-4532.

[198]

L. Formentini, M. Sanchez-Arago, L. Sanchez-Cenizo, et al., “The Mitochondrial ATPase Inhibitory Factor 1 Triggers a ROS-Mediated Retrograde Prosurvival and Proliferative Response,” Molecular Cell 45, no. 6 (2012): 731-742.

[199]

E. F. Fang, S. Lautrup, Y. Hou, et al., “NAD(+) In Aging: Molecular Mechanisms and Translational Implications,” Trends in Molecular Medicine 23, no. 10 (2017): 899-916.

[200]

R. H. Houtkooper, C. Canto, R. J. Wanders, et al., “The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways,” Endocrine Reviews 31, no. 2 (2010): 194-223.

[201]

K. J. Menzies, H. Zhang, E. Katsyuba, et al., “Protein Acetylation in Metabolism—Metabolites and Cofactors,” Nature Reviews. Endocrinology 12, no. 1 (2016): 43-60.

[202]

A. Mottis, S. Herzig, and J. Auwerx, “Mitocellular Communication: Shaping Health and Disease,” Science 366, no. 6467 (2019): 827-832.

[203]

E. Katsyuba and J. Auwerx, “Modulating NAD(+) Metabolism, From Bench to Bedside,” EMBO Journal 36, no. 18 (2017): 2670-2683.

[204]

K. Ohashi, S. Kawai, and K. Murata, “Identification and Characterization of a Human Mitochondrial NAD Kinase,” Nature Communications 3 (2012): 1248.

[205]

S. Imai, C. M. Armstrong, M. Kaeberlein, et al., “Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase,” Nature 403, no. 6771 (2000): 795-800.

[206]

S. J. Lin, P. A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for Life-Span Extension by Calorie Restriction in Saccharomyces cerevisiae,” Science 289, no. 5487 (2000): 2126-2128.

[207]

R. H. Houtkooper, E. Pirinen, and J. Auwerx, “Sirtuins as Regulators of Metabolism and Healthspan,” Nature Reviews. Molecular Cell Biology 13, no. 4 (2012): 225-238.

[208]

Y. Wu, X. Meng, C. Huang, et al., “Emerging Role of Silent Information Regulator 1 (SIRT1) in Hepatocellular Carcinoma: A Potential Therapeutic Target,” Tumour Biology 36, no. 6 (2015): 4063-4074.

[209]

M. Lagouge, C. Argmann, Z. Gerhart-Hines, et al., “Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1alpha,” Cell 127, no. 6 (2006): 1109-1122.

[210]

C. Canto, L. Q. Jiang, A. S. Deshmukh, et al., “Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle,” Cell Metabolism 11, no. 3 (2010): 213-219.

[211]

L. Qiang, L. Wang, N. Kon, et al., “Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Ppargamma,” Cell 150, no. 3 (2012): 620-632.

[212]

W. C. Hallows, S. Lee, and J. M. Denu, “Sirtuins Deacetylate and Activate Mammalian Acetyl-CoA Synthetases,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 27 (2006): 10230-10235.

[213]

L. Zhong, A. D'Urso, D. Toiber, et al., “The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1alpha,” Cell 140, no. 2 (2010): 280-293.

[214]

S. Masri, P. Rigor, M. Cervantes, et al., “Partitioning Circadian Transcription by SIRT6 Leads to Segregated Control of Cellular Metabolism,” Cell 158, no. 3 (2014): 659-672.

[215]

D. Ryu, Y. S. Jo, S. G. Lo, et al., “A SIRT7-Dependent Acetylation Switch of GABPbeta1 Controls Mitochondrial Function,” Cell Metabolism 20, no. 5 (2014): 856-869.

[216]

T. Yoshizawa, M. F. Karim, Y. Sato, et al., “SIRT7 Controls Hepatic Lipid Metabolism by Regulating the Ubiquitin-Proteasome Pathway,” Cell Metabolism 19, no. 4 (2014): 712-721.

[217]

J. Shin, M. He, Y. Liu, et al., “SIRT7 Represses Myc Activity to Suppress ER Stress and Prevent Fatty Liver Disease,” Cell Reports 5, no. 3 (2013): 654-665.

[218]

A. Bobrowska, G. Donmez, A. Weiss, et al., “SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington's Disease Phenotypes In Vivo,” PLoS One 7, no. 4 (2012): e34805.

[219]

E. Jing, S. Gesta, and C. R. Kahn, “SIRT2 Regulates Adipocyte Differentiation Through FoxO1 Acetylation/Deacetylation,” Cell Metabolism 6, no. 2 (2007): 105-114.

[220]

R. Lin, R. Tao, X. Gao, et al., “Acetylation Stabilizes ATP-Citrate Lyase to Promote Lipid Biosynthesis and Tumor Growth,” Molecular Cell 51, no. 4 (2013): 506-518.

[221]

W. Jiang, S. Wang, M. Xiao, et al., “Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5 Ubiquitin Ligase,” Molecular Cell 43, no. 1 (2011): 33-44.

[222]

D. B. Lombard, F. W. Alt, H. L. Cheng, et al., “Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation,” Molecular and Cellular Biology 27, no. 24 (2007): 8807-8814.

[223]

S. Someya, W. Yu, W. C. Hallows, et al., “Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss Under Caloric Restriction,” Cell 143, no. 5 (2010): 802-812.

[224]

E. Jing, B. Emanuelli, M. D. Hirschey, et al., “Sirtuin-3 (Sirt3) Regulates Skeletal Muscle Metabolism and Insulin Signaling via Altered Mitochondrial Oxidation and Reactive Oxygen Species Production,” Proceedings of the National Academy of Sciences of the United States of America 108, no. 35 (2011): 14608-14613.

[225]

B. H. Ahn, H. S. Kim, S. Song, et al., “A Role for the Mitochondrial Deacetylase Sirt3 in Regulating Energy Homeostasis,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 38 (2008): 14447-14452.

[226]

T. Shimazu, M. D. Hirschey, L. Hua, et al., “SIRT3 Deacetylates Mitochondrial 3-Hydroxy-3-Methylglutaryl CoA Synthase 2 and Regulates Ketone Body Production,” Cell Metabolism 12, no. 6 (2010): 654-661.

[227]

M. D. Hirschey, T. Shimazu, E. Goetzman, et al., “SIRT3 Regulates Mitochondrial Fatty-Acid Oxidation by Reversible Enzyme Deacetylation,” Nature 464, no. 7285 (2010): 121-125.

[228]

R. A. Mathias, T. M. Greco, A. Oberstein, et al., “Sirtuin 4 Is a Lipoamidase Regulating Pyruvate Dehydrogenase Complex Activity,” Cell 159, no. 7 (2014): 1615-1625.

[229]

A. Csibi, S. M. Fendt, C. Li, et al., “The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4,” Cell 153, no. 4 (2013): 840-854.

[230]

S. M. Jeong, C. Xiao, L. W. Finley, et al., “SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism,” Cancer Cell 23, no. 4 (2013): 450-463.

[231]

G. Laurent, N. J. German, A. K. Saha, et al., “SIRT4 Coordinates the Balance Between Lipid Synthesis and Catabolism by Repressing Malonyl CoA Decarboxylase,” Molecular Cell 50, no. 5 (2013): 686-698.

[232]

J. Du, Y. Zhou, X. Su, et al., “Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase,” Science 334, no. 6057 (2011): 806-809.

[233]

J. Park, Y. Chen, D. X. Tishkoff, et al., “SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways,” Molecular Cell 50, no. 6 (2013): 919-930.

[234]

M. J. Rardin, W. He, Y. Nishida, et al., “SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks,” Cell Metabolism 18, no. 6 (2013): 920-933.

[235]

M. Tan, C. Peng, K. A. Anderson, et al., “Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5,” Cell Metabolism 19, no. 4 (2014): 605-617.

[236]

J. Yu, S. Sadhukhan, L. G. Noriega, et al., “Metabolic Characterization of a Sirt5 Deficient Mouse Model,” Scientific Reports 3 (2013): 2806.

[237]

I. Kameshita, Z. Matsuda, T. Taniguchi, et al., “Poly (ADP-Ribose) Synthetase. Separation and Identification of Three Proteolytic Fragments as the Substrate-Binding Domain, the DNA-Binding Domain, and the Automodification Domain,” Journal of Biological Chemistry 259, no. 8 (1984): 4770-4776.

[238]

F. Malavasi, S. Deaglio, A. Funaro, et al., “Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology,” Physiological Reviews 88, no. 3 (2008): 841-886.

[239]

S. Diani-Moore, P. Ram, X. Li, et al., “Identification of the Aryl Hydrocarbon Receptor Target Gene TiPARP as a Mediator of Suppression of Hepatic Gluconeogenesis by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and of Nicotinamide as a Corrective Agent for This Effect,” Journal of Biological Chemistry 285, no. 50 (2010): 38801-38810.

[240]

M. T. Barbosa, S. M. Soares, C. M. Novak, et al., “The Enzyme CD38 (a NAD Glycohydrolase, EC 3.2.2.5) is Necessary for the Development of Diet-Induced Obesity,” FASEB Journal 21, no. 13 (2007): 3629-3639.

[241]

G. Asher, H. Reinke, M. Altmeyer, et al., “Poly(ADP-Ribose) Polymerase 1 Participates in the Phase Entrainment of Circadian Clocks to Feeding,” Cell 142, no. 6 (2010): 943-953.

[242]

P. Aksoy, T. A. White, M. Thompson, et al., “Regulation of Intracellular Levels of NAD: A Novel Role for CD38,” Biochemical and Biophysical Research Communications 345, no. 4 (2006): 1386-1392.

[243]

C. Canto, A. A. Sauve, and P. Bai, “Crosstalk Between Poly(ADP-Ribose) Polymerase and Sirtuin Enzymes,” Molecular Aspects of Medicine 34, no. 6 (2013): 1168-1201.

[244]

P. Bai, C. Canto, H. Oudart, et al., “PARP-1 Inhibition Increases Mitochondrial Metabolism Through SIRT1 Activation,” Cell Metabolism 13, no. 4 (2011): 461-468.

[245]

P. Aksoy, C. Escande, T. A. White, et al., “Regulation of SIRT 1 Mediated NAD Dependent Deacetylation: A Novel Role for the Multifunctional Enzyme CD38,” Biochemical and Biophysical Research Communications 349, no. 1 (2006): 353-359.

[246]

E. Pirinen, C. Canto, Y. S. Jo, et al., “Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle,” Cell Metabolism 19, no. 6 (2014): 1034-1041.

[247]

M. Lehmann, E. Pirinen, A. Mirsaidi, et al., “ARTD1-Induced Poly-ADP-Ribose Formation Enhances PPARgamma Ligand Binding and Co-Factor Exchange,” Nucleic Acids Research 43, no. 1 (2015): 129-142.

[248]

H. Zhang, D. Ryu, Y. Wu, et al., “NAD(+) Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice,” Science 352, no. 6292 (2016): 1436-1443.

[249]

R. Margueron and D. Reinberg, “Chromatin Structure and the Inheritance of Epigenetic Information,” Nature Reviews. Genetics 11, no. 4 (2010): 285-296.

[250]

Z. Dai, V. Ramesh, and J. W. Locasale, “The Evolving Metabolic Landscape of Chromatin Biology and Epigenetics,” Nature Reviews. Genetics 21, no. 12 (2020): 737-753.

[251]

N. Shyh-Chang, J. W. Locasale, C. A. Lyssiotis, et al., “Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation,” Science 339, no. 6116 (2013): 222-226.

[252]

S. J. Mentch, M. Mehrmohamadi, L. Huang, et al., “Histone Methylation Dynamics and Gene Regulation Occur Through the Sensing of One-Carbon Metabolism,” Cell Metabolism 22, no. 5 (2015): 861-873.

[253]

S. Nowicki and E. Gottlieb, “Oncometabolites: Tailoring Our Genes,” FEBS Journal 282, no. 15 (2015): 2796-2805.

[254]

J. Song, J. M. Herrmann, and T. Becker, “Quality Control of the Mitochondrial Proteome,” Nature Reviews. Molecular Cell Biology 22, no. 1 (2021): 54-70.

[255]

T. Shpilka and C. M. Haynes, “The Mitochondrial UPR: Mechanisms, Physiological Functions and Implications in Ageing,” Nature Reviews. Molecular Cell Biology 19, no. 2 (2018): 109-120.

[256]

Q. Zhao, J. Wang, I. V. Levichkin, et al., “A Mitochondrial Specific Stress Response in Mammalian Cells,” EMBO Journal 21, no. 17 (2002): 4411-4419.

[257]

J. Durieux, S. Wolff, and A. Dillin, “The Cell-Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity,” Cell 144, no. 1 (2011): 79-91.

[258]

A. M. Nargund, M. W. Pellegrino, C. J. Fiorese, et al., “Mitochondrial Import Efficiency of ATFS-1 Regulates Mitochondrial UPR Activation,” Science 337, no. 6094 (2012): 587-590.

[259]

R. H. Houtkooper, L. Mouchiroud, D. Ryu, et al., “Mitonuclear Protein Imbalance as a Conserved Longevity Mechanism,” Nature 497, no. 7450 (2013): 451-457.

[260]

R. D. Martinus, G. P. Garth, T. L. Webster, et al., “Selective Induction of Mitochondrial Chaperones in Response to Loss of the Mitochondrial Genome,” European Journal of Biochemistry 240, no. 1 (1996): 98-103.

[261]

C. M. Haynes, Y. Yang, S. P. Blais, et al., “The Matrix Peptide Exporter HAF-1 Signals a Mitochondrial UPR by Activating the Transcription Factor ZC376.7 in C. elegans,” Molecular Cell 37, no. 4 (2010): 529-540.

[262]

L. Young, K. Leonhard, T. Tatsuta, et al., “Role of the ABC Transporter Mdl1 in Peptide Export From Mitochondria,” Science 291, no. 5511 (2001): 2135-2138.

[263]

N. Rowley, C. Prip-Buus, B. Westermann, et al., “Mdj1p, a Novel Chaperone of the DnaJ Family, Is Involved in Mitochondrial Biogenesis and Protein Folding,” Cell 77, no. 2 (1994): 249-259.

[264]

A. M. Nargund, C. J. Fiorese, M. W. Pellegrino, et al., “Mitochondrial and Nuclear Accumulation of the Transcription Factor ATFS-1 Promotes OXPHOS Recovery During the UPR(Mt),” Molecular Cell 58, no. 1 (2015): 123-133.

[265]

J. E. Aldridge, T. Horibe, and N. J. Hoogenraad, “Discovery of Genes Activated by the Mitochondrial Unfolded Protein Response (mtUPR) and Cognate Promoter Elements,” PLoS One 2, no. 9 (2007): e874.

[266]

K. D. Mccullough, J. L. Martindale, L. O. Klotz, et al., “Gadd153 Sensitizes Cells to Endoplasmic Reticulum Stress by Down-Regulating Bcl2 and Perturbing the Cellular Redox State,” Molecular and Cellular Biology 21, no. 4 (2001): 1249-1259.

[267]

T. Horibe and N. J. Hoogenraad, “The Chop Gene Contains an Element for the Positive Regulation of the Mitochondrial Unfolded Protein Response,” PLoS One 2, no. 9 (2007): e835.

[268]

C. Weiss, S. Schneider, E. F. Wagner, et al., “JNK Phosphorylation Relieves HDAC3-Dependent Suppression of the Transcriptional Activity of c-Jun,” EMBO Journal 22, no. 14 (2003): 3686-3695.

[269]

A. Jaeschke, M. Karasarides, J. J. Ventura, et al., “JNK2 Is a Positive Regulator of the cJun Transcription Factor,” Molecular Cell 23, no. 6 (2006): 899-911.

[270]

C. J. Fiorese, A. M. Schulz, Y. F. Lin, et al., “The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR,” Current Biology 26, no. 15 (2016): 2037-2043.

[271]

D. Zhou, L. R. Palam, L. Jiang, et al., “Phosphorylation of eIF2 Directs ATF5 Translational Control in Response to Diverse Stress Conditions,” Journal of Biological Chemistry 283, no. 11 (2008): 7064-7073.

[272]

H. P. Harding, I. Novoa, Y. Zhang, et al., “Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells,” Molecular Cell 6, no. 5 (2000): 1099-1108.

[273]

T. Yamazaki, A. Ohmi, H. Kurumaya, et al., “Regulation of the Human CHOP Gene Promoter by the Stress Response Transcription Factor ATF5 via the AARE1 Site in Human Hepatoma HepG2 Cells,” Life Sciences 87, no. 9-10 (2010): 294-301.

[274]

B. F. Teske, M. E. Fusakio, D. Zhou, et al., “CHOP Induces Activating Transcription Factor 5 (ATF5) to Trigger Apoptosis in Response to Perturbations in Protein Homeostasis,” Molecular Biology of the Cell 24, no. 15 (2013): 2477-2490.

[275]

A. Melber and C. M. Haynes, “UPR(Mt) Regulation and Output: A Stress Response Mediated by Mitochondrial-Nuclear Communication,” Cell Research 28, no. 3 (2018): 281-295.

[276]

T. W. Fawcett, J. L. Martindale, K. Z. Guyton, et al., “Complexes Containing Activating Transcription Factor (ATF)/cAMP-Responsive-Element-Binding Protein (CREB) Interact With the CCAAT/Enhancer-Binding Protein (C/EBP)-ATF Composite Site to Regulate Gadd153 Expression During the Stress Response,” Biochemical Journal 339, no. Pt 1 (1999): 135-141.

[277]

X. Z. Wang, B. Lawson, J. W. Brewer, et al., “Signals From the Stressed Endoplasmic Reticulum Induce C/EBP-Homologous Protein (CHOP/GADD153),” Molecular and Cellular Biology 16, no. 8 (1996): 4273-4280.

[278]

J. E. Fraser, C. Wang, K. W. Chan, et al., “Novel Dengue Virus Inhibitor 4-HPR Activates ATF4 Independent of Protein Kinase R-Like Endoplasmic Reticulum Kinase and Elevates Levels of eIF2alpha Phosphorylation in Virus Infected Cells,” Antiviral Research 130 (2016): 1-6.

[279]

Y. Watatani, K. Ichikawa, N. Nakanishi, et al., “Stress-Induced Translation of ATF5 mRNA Is Regulated by the 5′-Untranslated Region,” Journal of Biological Chemistry 283, no. 5 (2008): 2543-2553.

[280]

Y. Y. Lee, R. C. Cevallos, and E. Jan, “An Upstream Open Reading Frame Regulates Translation of GADD34 During Cellular Stresses That Induce eIF2alpha Phosphorylation,” Journal of Biological Chemistry 284, no. 11 (2009): 6661-6673.

[281]

L. Papa and D. Germain, “Estrogen Receptor Mediates a Distinct Mitochondrial Unfolded Protein Response,” Journal of Cell Science 124, no. Pt 9 (2011): 1396-1402.

[282]

L. Papa and D. Germain, “SirT3 Regulates the Mitochondrial Unfolded Protein Response,” Molecular and Cellular Biology 34, no. 4 (2014): 699-710.

[283]

S. Radke, H. Chander, P. Schafer, et al., “Mitochondrial Protein Quality Control by the Proteasome Involves Ubiquitination and the Protease Omi,” Journal of Biological Chemistry 283, no. 19 (2008): 12681-12685.

[284]

H. Zhang, C. K. Tsui, G. Garcia, et al., “The Extracellular Matrix Integrates Mitochondrial Homeostasis,” Cell 187, no. 16 (2024): 4289-4304.

[285]

L. Zhou and Y. Liu, “Germline Regulation of the Somatic Mitochondrial Stress Response,” Trends in Cell Biology 34, no. 8 (2024): 617-619.

[286]

K. Shen, J. Durieux, C. G. Mena, et al., “The Germline Coordinates Mitokine Signaling,” Cell 187, no. 17 (2024): 4605-4620.

[287]

G. Calculli, H. J. Lee, K. Shen, et al., “Systemic Regulation of Mitochondria by Germline Proteostasis Prevents Protein Aggregation in the Soma of C. elegans,” Science Advances 7, no. 26 (2021): eabg3012.

[288]

N. Charmpilas, A. Sotiriou, K. Axarlis, et al., “Reproductive Regulation of the Mitochondrial Stress Response in Caenorhabditis elegans,” Cell Reports 43, no. 6 (2024): 114336.

[289]

X. Wang and X. J. Chen, “A Cytosolic Network Suppressing Mitochondria-Mediated Proteostatic Stress and Cell Death,” Nature 524, no. 7566 (2015): 481-484.

[290]

L. Wrobel, U. Topf, P. Bragoszewski, et al., “Mistargeted Mitochondrial Proteins Activate a Proteostatic Response in the Cytosol,” Nature 524, no. 7566 (2015): 485-488.

[291]

F. Boos, J. Labbadia, and J. M. Herrmann, “How the Mitoprotein-Induced Stress Response Safeguards the Cytosol: A Unified View,” Trends in Cell Biology 30, no. 3 (2020): 241-254.

[292]

A. E. Masser, W. Kang, J. Roy, et al., “Cytoplasmic Protein Misfolding Titrates Hsp70 to Activate Nuclear Hsf1,” eLife 8 (2019): e47791.

[293]

F. Sutandy, I. Gossner, G. Tascher, et al., “A Cytosolic Surveillance Mechanism Activates the Mitochondrial UPR,” Nature 618, no. 7966 (2023): 849-854.

[294]

K. Tan, M. Fujimoto, R. Takii, et al., “Mitochondrial SSBP1 Protects Cells From Proteotoxic Stresses by Potentiating Stress-Induced HSF1 Transcriptional Activity,” Nature Communications 6 (2015): 6580.

[295]

F. Boos, L. Kramer, C. Groh, et al., “Mitochondrial Protein-Induced Stress Triggers a Global Adaptive Transcriptional Programme,” Nature Cell Biology 21, no. 4 (2019): 442-451.

[296]

L. F. Gu, J. Q. Chen, Q. Y. Lin, et al., “Roles of Mitochondrial Unfolded Protein Response in Mammalian Stem Cells,” World Journal of Stem Cells 13, no. 7 (2021): 737-752.

[297]

M. Ermolaeva, F. Neri, A. Ori, et al., “Cellular and Epigenetic Drivers of Stem Cell Ageing,” Nature Reviews. Molecular Cell Biology 19, no. 9 (2018): 594-610.

[298]

N. S. Chandel, H. Jasper, T. T. Ho, et al., “Metabolic Regulation of Stem Cell Function in Tissue Homeostasis and Organismal Ageing,” Nature Cell Biology 18, no. 8 (2016): 823-832.

[299]

V. A. Rafalski, E. Mancini, and A. Brunet, “Energy Metabolism and Energy-Sensing Pathways in Mammalian Embryonic and Adult Stem Cell Fate,” Journal of Cell Science 125, no. Pt 23 (2012): 5597-5608.

[300]

C. Piccoli, R. Ria, R. Scrima, et al., “Characterization of Mitochondrial and Extra-Mitochondrial Oxygen Consuming Reactions in Human Hematopoietic Stem Cells. Novel Evidence of the Occurrence of NAD(P)H Oxidase Activity,” Journal of Biological Chemistry 280, no. 28 (2005): 26467-26476.

[301]

C. T. Chen, Y. R. Shih, T. K. Kuo, et al., “Coordinated Changes of Mitochondrial Biogenesis and Antioxidant Enzymes During Osteogenic Differentiation of Human Mesenchymal Stem Cells,” Stem Cells 26, no. 4 (2008): 960-968.

[302]

S. Chung, P. P. Dzeja, R. S. Faustino, et al., “Mitochondrial Oxidative Metabolism Is Required for the Cardiac Differentiation of Stem Cells,” Nature Clinical Practice. Cardiovascular Medicine 4, no. Suppl 1 (2007): S60-S67.

[303]

G. D'Ippolito, S. Diabira, G. A. Howard, et al., “Low Oxygen Tension Inhibits Osteogenic Differentiation and Enhances Stemness of Human MIAMI Cells,” Bone 39, no. 3 (2006): 513-522.

[304]

T. Ezashi, P. Das, and R. M. Roberts, “Low O2 Tensions and the Prevention of Differentiation of hES Cells,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 13 (2005): 4783-4788.

[305]

C. H. Jeong, H. J. Lee, J. H. Cha, et al., “Hypoxia-Inducible Factor-1 Alpha Inhibits Self-Renewal of Mouse Embryonic Stem Cells In Vitro via Negative Regulation of the Leukemia Inhibitory Factor-STAT3 Pathway,” Journal of Biological Chemistry 282, no. 18 (2007): 13672-13679.

[306]

S. J. Morrison, M. Csete, A. K. Groves, et al., “Culture in Reduced Levels of Oxygen Promotes Clonogenic Sympathoadrenal Differentiation by Isolated Neural Crest Stem Cells,” Journal of Neuroscience 20, no. 19 (2000): 7370-7376.

[307]

C. D. Folmes, T. J. Nelson, A. Martinez-Fernandez, et al., “Somatic Oxidative Bioenergetics Transitions Into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming,” Cell Metabolism 14, no. 2 (2011): 264-271.

[308]

Y. Zhang, J. Wei, J. Cao, et al., “Requirements for Human-Induced Pluripotent Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13182.

[309]

H. Zhang, K. J. Menzies, and J. Auwerx, “The Role of Mitochondria in Stem Cell Fate and Aging,” Development 145, no. 8 (2018): dev143420.

[310]

K. Miharada, G. Karlsson, M. Rehn, et al., “Cripto Regulates Hematopoietic Stem Cells as a Hypoxic-Niche-Related Factor Through Cell Surface Receptor GRP78,” Cell Stem Cell 9, no. 4 (2011): 330-344.

[311]

X. L. Zu and M. Guppy, “Cancer Metabolism: Facts, Fantasy, and Fiction,” Biochemical and Biophysical Research Communications 313, no. 3 (2004): 459-465.

[312]

T. Suda, K. Takubo, and G. L. Semenza, “Metabolic Regulation of Hematopoietic Stem Cells in the Hypoxic Niche,” Cell Stem Cell 9, no. 4 (2011): 298-310.

[313]

X. Zheng, L. Boyer, M. Jin, et al., “Metabolic Reprogramming During Neuronal Differentiation From Aerobic Glycolysis to Neuronal Oxidative Phosphorylation,” eLife 5 (2016): e13374.

[314]

K. V. Tormos, E. Anso, R. B. Hamanaka, et al., “Mitochondrial Complex III ROS Regulate Adipocyte Differentiation,” Cell Metabolism 14, no. 4 (2011): 537-544.

[315]

S. Inoue, S. Noda, K. Kashima, et al., “Mitochondrial Respiration Defects Modulate Differentiation But Not Proliferation of Hematopoietic Stem and Progenitor Cells,” FEBS Letters 584, no. 15 (2010): 3402-3409.

[316]

O. Yanes, J. Clark, D. M. Wong, et al., “Metabolic Oxidation Regulates Embryonic Stem Cell Differentiation,” Nature Chemical Biology 6, no. 6 (2010): 411-417.

[317]

Y. Tang, B. Luo, Z. Deng, et al., “Mitochondrial Aerobic Respiration Is Activated During Hair Follicle Stem Cell Differentiation, and Its Dysfunction Retards Hair Regeneration,” PeerJ 4 (2016): e1821.

[318]

H. Kondoh, M. E. Lleonart, Y. Nakashima, et al., “A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells,” Antioxidants & Redox Signaling 9, no. 3 (2007): 293-299.

[319]

N. Vannini, M. Girotra, O. Naveiras, et al., “Specification of Haematopoietic Stem Cell Fate via Modulation of Mitochondrial Activity,” Nature Communications 7 (2016): 13125.

[320]

T. Graf and M. Stadtfeld, “Heterogeneity of Embryonic and Adult Stem Cells,” Cell Stem Cell 3, no. 5 (2008): 480-483.

[321]

P. Rocheteau, B. Gayraud-Morel, I. Siegl-Cachedenier, et al., “A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands After Cell Division,” Cell 148, no. 1-2 (2012): 112-125.

[322]

X. Yu, H. Wu, J. Su, et al., “Acetyl-CoA Metabolism Maintains Histone Acetylation for Syncytialization of Human Placental Trophoblast Stem Cells,” Cell Stem Cell 31, no. 9 (2024): 1280-1297.

[323]

Z. Wang, D. Wei, E. Bin, et al., “Enhanced Glycolysis-Mediated Energy Production in Alveolar Stem Cells Is Required for Alveolar Regeneration,” Cell Stem Cell 30, no. 8 (2023): 1028-1042.

[324]

M. Knobloch, G. A. Pilz, B. Ghesquiere, et al., “A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity,” Cell Reports 20, no. 9 (2017): 2144-2155.

[325]

J. G. Ryall, S. Dell'Orso, A. Derfoul, et al., “The NAD(+)-Dependent SIRT1 Deacetylase Translates a Metabolic Switch Into Regulatory Epigenetics in Skeletal Muscle Stem Cells,” Cell Stem Cell 16, no. 2 (2015): 171-183.

[326]

M. Bonora, C. Morganti, N. van Gastel, et al., “A Mitochondrial NADPH-Cholesterol Axis Regulates Extracellular Vesicle Biogenesis to Support Hematopoietic Stem Cell Fate,” Cell Stem Cell 31, no. 3 (2024): 359-377.

[327]

S. K. Tiwari, A. G. Toshniwal, S. Mandal, et al., “Fatty Acid Beta-Oxidation Is Required for the Differentiation of Larval Hematopoietic Progenitors in Drosophila,” eLife 9 (2020): e53247.

[328]

F. Peng, J. Lu, K. Su, et al., “Oncogenic Fatty Acid Oxidation Senses Circadian Disruption in Sleep-Deficiency-Enhanced Tumorigenesis,” Cell Metabolism 36, no. 7 (2024): 1598-1618.

[329]

E. Perales-Clemente, C. D. Folmes, and A. Terzic, “Metabolic Regulation of Redox Status in Stem Cells,” Antioxidants & Redox Signaling 21, no. 11 (2014): 1648-1659.

[330]

M. Khacho, A. Clark, D. S. Svoboda, et al., “Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program,” Cell Stem Cell 19, no. 2 (2016): 232-247.

[331]

K. Ito and T. Suda, “Metabolic Requirements for the Maintenance of Self-Renewing Stem Cells,” Nature Reviews. Molecular Cell Biology 15, no. 4 (2014): 243-256.

[332]

V. M. Renault, V. A. Rafalski, A. A. Morgan, et al., “FoxO3 Regulates Neural Stem Cell Homeostasis,” Cell Stem Cell 5, no. 5 (2009): 527-539.

[333]

Z. Tothova, R. Kollipara, B. J. Huntly, et al., “FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress,” Cell 128, no. 2 (2007): 325-339.

[334]

S. D. Gopinath, A. E. Webb, A. Brunet, et al., “FOXO3 Promotes Quiescence in Adult Muscle Stem Cells During the Process of Self-Renewal,” Stem Cell Reports 2, no. 4 (2014): 414-426.

[335]

G. Marsboom, G. F. Zhang, N. Pohl-Avila, et al., “Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4,” Cell Reports 16, no. 2 (2016): 323-332.

[336]

K. Ito, A. Hirao, F. Arai, et al., “Regulation of Oxidative Stress by ATM Is Required for Self-Renewal of Haematopoietic Stem Cells,” Nature 431, no. 7011 (2004): 997-1002.

[337]

K. Ito, A. Hirao, F. Arai, et al., “Reactive Oxygen Species Act Through p38 MAPK to Limit the Lifespan of Hematopoietic Stem Cells,” Nature Medicine 12, no. 4 (2006): 446-451.

[338]

J. M. Schvartzman, C. B. Thompson, and L. Finley, “Metabolic Regulation of Chromatin Modifications and Gene Expression,” Journal of Cell Biology 217, no. 7 (2018): 2247-2259.

[339]

A. Moussaieff, M. Rouleau, D. Kitsberg, et al., “Glycolysis-Mediated Changes in Acetyl-CoA and Histone Acetylation Control the Early Differentiation of Embryonic Stem Cells,” Cell Metabolism 21, no. 3 (2015): 392-402.

[340]

K. E. Wellen, G. Hatzivassiliou, U. M. Sachdeva, et al., “ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation,” Science 324, no. 5930 (2009): 1076-1080.

[341]

S. Das, F. Morvan, G. Morozzi, et al., “ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation,” Cell Reports 21, no. 11 (2017): 3003-3011.

[342]

G. Sutendra, A. Kinnaird, P. Dromparis, et al., “A Nuclear Pyruvate Dehydrogenase Complex Is Important for the Generation of Acetyl-CoA and Histone Acetylation,” Cell 158, no. 1 (2014): 84-97.

[343]

N. Yucel, Y. X. Wang, T. Mai, et al., “Glucose Metabolism Drives Histone Acetylation Landscape Transitions That Dictate Muscle Stem Cell Function,” Cell Reports 27, no. 13 (2019): 3939-3955.

[344]

Y. Fang, S. Tang, and X. Li, “Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells,” Trends in Endocrinology and Metabolism 30, no. 3 (2019): 177-188.

[345]

B. N. Vazquez, J. K. Thackray, N. G. Simonet, et al., “SIRT7 Promotes Genome Integrity and Modulates Non-Homologous End Joining DNA Repair,” EMBO Journal 35, no. 14 (2016): 1488-1503.

[346]

J. P. Etchegaray, L. Chavez, Y. Huang, et al., “The Histone Deacetylase SIRT6 Controls Embryonic Stem Cell Fate via TET-Mediated Production of 5-Hydroxymethylcytosine,” Nature Cell Biology 17, no. 5 (2015): 545-557.

[347]

C. Mozzetta, V. Sartorelli, C. Steinkuhler, et al., “HDAC Inhibitors as Pharmacological Treatment for Duchenne Muscular Dystrophy: A Discovery Journey From Bench to Patients,” Trends in Molecular Medicine 30, no. 3 (2024): 278-294.

[348]

N. Shiraki, Y. Shiraki, T. Tsuyama, et al., “Methionine Metabolism Regulates Maintenance and Differentiation of Human Pluripotent Stem Cells,” Cell Metabolism 19, no. 5 (2014): 780-794.

[349]

H. Sperber, J. Mathieu, Y. Wang, et al., “The Metabolome Regulates the Epigenetic Landscape During Naive-to-Primed Human Embryonic Stem Cell Transition,” Nature Cell Biology 17, no. 12 (2015): 1523-1535.

[350]

B. W. Carey, L. W. Finley, J. R. Cross, et al., “Intracellular Alpha-Ketoglutarate Maintains the Pluripotency of Embryonic Stem Cells,” Nature 518, no. 7539 (2015): 413-416.

[351]

R. P. Chakrabarty and N. S. Chandel, “Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate,” Cell Stem Cell 28, no. 3 (2021): 394-408.

[352]

E. Anso, S. E. Weinberg, L. P. Diebold, et al., “The Mitochondrial Respiratory Chain Is Essential for Haematopoietic Stem Cell Function,” Nature Cell Biology 19, no. 6 (2017): 614-625.

[353]

M. Sciacovelli, E. Goncalves, T. I. Johnson, et al., “Fumarate Is an Epigenetic Modifier That Elicits Epithelial-to-Mesenchymal Transition,” Nature 537, no. 7621 (2016): 544-547.

[354]

L. Yang, Z. Ruan, X. Lin, et al., “NAD(+) Dependent UPR(Mt) Activation Underlies Intestinal Aging Caused by Mitochondrial DNA Mutations,” Nature Communications 15, no. 1 (2024): 546.

[355]

C. Ma, C. Pi, Y. Yang, et al., “Nampt Expression Decreases Age-Related Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Sirt1,” PLoS One 12, no. 1 (2017): e170930.

[356]

J. Fang, P. Hou, S. Liu, et al., “NAD(+) Salvage Governs the Immunosuppressive Capacity of Mesenchymal Stem Cells,” Cellular & Molecular Immunology 20, no. 10 (2023): 1171-1185.

[357]

K. Brown, S. Xie, X. Qiu, et al., “SIRT3 Reverses Aging-Associated Degeneration,” Cell Reports 3, no. 2 (2013): 319-327.

[358]

K. Miyamoto, K. Y. Araki, K. Naka, et al., “Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool,” Cell Stem Cell 1, no. 1 (2007): 101-112.

[359]

N. Waldschmitt, E. Berger, E. Rath, et al., “C/EBP Homologous Protein Inhibits Tissue Repair in Response to Gut Injury and Is Inversely Regulated With Chronic Inflammation,” Mucosal Immunology 7, no. 6 (2014): 1452-1466.

[360]

E. Berger, E. Rath, D. Yuan, et al., “Mitochondrial Function Controls Intestinal Epithelial Stemness and Proliferation,” Nature Communications 7 (2016): 13171.

[361]

L. Whitesell and S. L. Lindquist, “HSP90 and the Chaperoning of Cancer,” Nature Reviews. Cancer 5, no. 10 (2005): 761-772.

[362]

J. C. Ghosh, M. D. Siegelin, T. Dohi, et al., “Heat Shock Protein 60 Regulation of the Mitochondrial Permeability Transition Pore in Tumor Cells,” Cancer Research 70, no. 22 (2010): 8988-8993.

[363]

Z. Sheng, L. Li, L. J. Zhu, et al., “A Genome-Wide RNA Interference Screen Reveals an Essential CREB3L2-ATF5-MCL1 Survival Pathway in Malignant Glioma With Therapeutic Implications,” Nature Medicine 16, no. 6 (2010): 671-677.

[364]

Y. M. Cho, S. Kwon, Y. K. Pak, et al., “Dynamic Changes in Mitochondrial Biogenesis and Antioxidant Enzymes During the Spontaneous Differentiation of Human Embryonic Stem Cells,” Biochemical and Biophysical Research Communications 348, no. 4 (2006): 1472-1478.

[365]

M. Y. Son, H. Choi, Y. M. Han, et al., “Unveiling the Critical Role of REX1 in the Regulation of Human Stem Cell Pluripotency,” Stem Cells 31, no. 11 (2013): 2374-2387.

[366]

L. R. Todd, M. N. Damin, R. Gomathinayagam, et al., “Growth Factor erv1-Like Modulates Drp1 to Preserve Mitochondrial Dynamics and Function in Mouse Embryonic Stem Cells,” Molecular Biology of the Cell 21, no. 7 (2010): 1225-1236.

[367]

A. Vazquez-Martin, C. Van den Haute, S. Cufi, et al., “Mitophagy-Driven Mitochondrial Rejuvenation Regulates Stem Cell Fate,” Aging (Albany NY) 8, no. 7 (2016): 1330-1352.

[368]

B. Pernaute, S. Perez-Montero, N. J. Sanchez, et al., “DRP1 Levels Determine the Apoptotic Threshold During Embryonic Differentiation Through a Mitophagy-Dependent Mechanism,” Developmental Cell 57, no. 11 (2022): 1316-1330.

[369]

J. Liu, X. Bao, J. Huang, et al., “TMEM135 Maintains the Equilibrium of Osteogenesis and Adipogenesis by Regulating Mitochondrial Dynamics,” Metabolism 152 (2024): 155767.

[370]

A. Kasahara, S. Cipolat, Y. Chen, et al., “Mitochondrial Fusion Directs Cardiomyocyte Differentiation via Calcineurin and Notch Signaling,” Science 342, no. 6159 (2013): 734-737.

[371]

L. L. Luchsinger, M. J. de Almeida, D. J. Corrigan, et al., “Mitofusin 2 Maintains Haematopoietic Stem Cells With Extensive Lymphoid Potential,” Nature 529, no. 7587 (2016): 528-531.

[372]

N. Sun, J. Yun, J. Liu, et al., “Measuring In Vivo Mitophagy,” Molecular Cell 60, no. 4 (2015): 685-696.

[373]

S. Kochan, M. C. Malo, M. Jevtic, et al., “Enhanced Mitochondrial Fusion During a Critical Period of Synaptic Plasticity in Adult-Born Neurons,” Neuron 112, no. 12 (2024): 1997-2014.

[374]

L. Garcia-Prat, M. Martinez-Vicente, E. Perdiguero, et al., “Autophagy Maintains Stemness by Preventing Senescence,” Nature 529, no. 7584 (2016): 37-42.

[375]

X. Hong, J. Isern, S. Campanario, et al., “Mitochondrial Dynamics Maintain Muscle Stem Cell Regenerative Competence Throughout Adult Life by Regulating Metabolism and Mitophagy,” Cell Stem Cell 29, no. 9 (2022): 1298-1314.

[376]

M. Liesa and O. S. Shirihai, “Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure,” Cell Metabolism 17, no. 4 (2013): 491-506.

[377]

J. R. Inigo and D. Chandra, “The Mitochondrial Unfolded Protein Response (UPR(Mt)): Shielding Against Toxicity to Mitochondria in Cancer,” Journal of Hematology & Oncology 15, no. 1 (2022): 98.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/