The Dual Roles of Lamin A/C in Macrophage Mechanotransduction

Yao Wang , Sabine Ruf , Lei Wang , Thomas Heimerl , Gert Bange , Sabine Groeger

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13794

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13794 DOI: 10.1111/cpr.13794
ORIGINAL ARTICLE

The Dual Roles of Lamin A/C in Macrophage Mechanotransduction

Author information +
History +
PDF

Abstract

Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.

Keywords

compressive force / lamin A/C / LINC complex / macrophage / mechanotransduction / YAP1

Cite this article

Download citation ▾
Yao Wang, Sabine Ruf, Lei Wang, Thomas Heimerl, Gert Bange, Sabine Groeger. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Proliferation, 2025, 58(5): e13794 DOI:10.1111/cpr.13794

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Ginhoux and M. Guilliams, “Tissue-Resident Macrophage Ontogeny and Homeostasis,” Immunity 44, no. 3 (2016): 439-449.

[2]

K. Maruyama, E. Nemoto, and S. Yamada, “Mechanical Regulation of Macrophage Function - Cyclic Tensile Force Inhibits NLRP3 Inflammasome-Dependent IL-1β Secretion in Murine Macrophages,” Inflamm Regen 39 (2019): 3.

[3]

H. Xu, J. Guan, Z. Jin, et al., “Mechanical Force Modulates Macrophage Proliferation via Piezo1-AKT-Cyclin D1 Axis,” FASEB Journal 36, no. 8 (2022): e22423.

[4]

N. Jain and V. Vogel, “Spatial Confinement Downsizes the Inflammatory Response of Macrophages,” Nature Materials 17, no. 12 (2018): 1134-1144.

[5]

H. Atcha, A. Jairaman, J. R. Holt, et al., “Mechanically Activated Ion Channel Piezo1 Modulates Macrophage Polarization and Stiffness Sensing,” Nature Communications 12, no. 1 (2021): 3256.

[6]

M. Alonso-Nocelo, T. M. Raimondo, K. H. Vining, R. López-López, M. de la Fuente, and D. J. Mooney, “Matrix Stiffness and Tumor-Associated Macrophages Modulate Epithelial to Mesenchymal Transition of Human Adenocarcinoma Cells,” Biofabrication 10, no. 3 (2018): 035004.

[7]

K. Song, H. Kwon, C. Han, et al., “Yes-Associated Protein in Kupffer Cells Enhances the Production of Proinflammatory Cytokines and Promotes the Development of Nonalcoholic Steatohepatitis,” Hepatology 72, no. 1 (2020): 72-87.

[8]

H. Xu, S. Zhang, A. A. Sathe, et al., “CCR2(+) Macrophages Promote Orthodontic Tooth Movement and Alveolar Bone Remodeling,” Frontiers in Immunology 13 (2022): 835986.

[9]

P. Pu, S. Wu, K. Zhang, et al., “Mechanical Force Induces Macrophage-Derived Exosomal UCHL3 Promoting Bone Marrow Mesenchymal Stem Cell Osteogenesis by Targeting SMAD1,” Journal of Nanobiotechnology 21, no. 1 (2023): 88.

[10]

Y. Tang, C. Zhao, Y. Zhuang, et al., “Mechanosensitive Piezo1 Protein as a Novel Regulator in Macrophages and Macrophage-Mediated Inflammatory Diseases,” Frontiers in Immunology 14 (2023): 1149336.

[11]

P. Mukherjee, S. G. Rahaman, R. Goswami, B. Dutta, M. Mahanty, and S. O. Rahaman, “Role of Mechanosensitive Channels/Receptors in Atherosclerosis,” American Journal of Physiology. Cell Physiology 322, no. 5 (2022): C927-c938.

[12]

S. Jabre, W. Hleihel, and C. Coirault, “Nuclear Mechanotransduction in Skeletal Muscle,” Cells 10 (2021): 2.

[13]

A. P. Navarro, M. A. Collins, and E. S. Folker, “The Nucleus Is a Conserved Mechanosensation and Mechanoresponse Organelle,” Cytoskeleton (Hoboken) 73, no. 2 (2016): 59-67.

[14]

L. Montel, A. Sotiropoulos, and S. Hénon, “The Nature and Intensity of Mechanical Stimulation Drive Different Dynamics of MRTF-A Nuclear Redistribution After Actin Remodeling in Myoblasts,” PLoS One 14, no. 3 (2019): e0214385.

[15]

Y. Wang, S. Groeger, J. Yong, and S. Ruf, “Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation,” International Journal of Molecular Sciences 24, no. 4 (2023): 3117.

[16]

B. E. Danielsson, B. George Abraham, E. Mäntylä, et al., “Nuclear Lamina Strain States Revealed by Intermolecular Force Biosensor,” Nature Communications 14, no. 1 (2023): 3867.

[17]

N. Alcorta-Sevillano, I. Macías, C. I. Rodríguez, and A. Infante, “Crucial Role of Lamin A/C in the Migration and Differentiation of MSCs in Bone,” Cells 9 (2020): 1330, https://doi.org/10.3390/cells9061330.

[18]

S. Osmanagic-Myers and R. Foisner, “The Structural and Gene Expression Hypotheses in Laminopathic Diseases-Not So Different After All,” Molecular Biology of the Cell 30, no. 15 (2019): 1786-1790.

[19]

R. Al-Saaidi and P. Bross, “Do lamin A and lamin C have unique roles?,” Chromosoma 124, no. 1 (2015): 1-12.

[20]

J. Swift, I. L. Ivanovska, A. Buxboim, et al., “Nuclear Lamin-A Scales With Tissue Stiffness and Enhances Matrix-Directed Differentiation,” Science 341, no. 6149 (2013): 1240104.

[21]

B. Zhang, Y. Yang, R. Keyimu, J. Hao, Z. Zhao, and R. Ye, “The Role of Lamin A/C in Mesenchymal Stem Cell Differentiation,” Journal of Physiology and Biochemistry 75, no. 1 (2019): 11-18.

[22]

K. T. Sapra, Z. Qin, A. Dubrovsky-Gaupp, et al., “Nonlinear Mechanics of Lamin Filaments and the Meshwork Topology Build an Emergent Nuclear Lamina,” Nature Communications 11, no. 1 (2020): 6205.

[23]

F. Donnaloja, F. Carnevali, E. Jacchetti, and M. T. Raimondi, “Lamin A/C Mechanotransduction in Laminopathies,” Cells 9 (2020): 1306, https://doi.org/10.3390/cells9051306.

[24]

J. Y. Shin and H. J. Worman, “Molecular Pathology of Laminopathies,” Annual Review of Pathology 17 (2022): 159-180.

[25]

S. Pande and D. K. Ghosh, “Nuclear Proteostasis Imbalance in Laminopathy-Associated Premature Aging Diseases,” FASEB Journal 37, no. 8 (2023): e23116.

[26]

O. Lityagina and G. Dobreva, “The LINC Between Mechanical Forces and Chromatin,” Frontiers in Physiology 12 (2021): 710809.

[27]

A. A. Khilan, N. A. Al-Maslamani, and H. F. Horn, “Cell Stretchers and the LINC Complex in Mechanotransduction,” Archives of Biochemistry and Biophysics 702 (2021): 108829.

[28]

B. A. Sosa, A. Rothballer, U. Kutay, and T. U. Schwartz, “LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins,” Cell 149, no. 5 (2012): 1035-1047.

[29]

H. T. J. Gilbert, V. Mallikarjun, O. Dobre, et al., “Nuclear Decoupling Is Part of a Rapid Protein-Level Cellular Response to High-Intensity Mechanical Loading,” Nature Communications 10, no. 1 (2019): 4149.

[30]

M. Raices and M. A. D'Angelo, “Analysis of Nuclear Pore Complex Permeability in Mammalian Cells and Isolated Nuclei Using Fluorescent Dextrans,” Methods in Molecular Biology 2502 (2022): 69-80.

[31]

C. J. Sympson and T. E. Geoghegan, “Actin Gene Expression in Murine Erythroleukemia Cells Treated With Cytochalasin D,” Experimental Cell Research 189, no. 1 (1990): 28-32.

[32]

G. Martinez, D. Cappetta, M. Telesca, et al., “Cytochalasin D Restores Nuclear Size Acting on F-Actin and IZUMO1 Localization in Low-Quality Spermatozoa,” International Journal of Biological Sciences 19, no. 7 (2023): 2234-2255.

[33]

A. N. Ramey-Ward, H. Su, and K. Salaita, “Mechanical Stimulation of Adhesion Receptors Using Light-Responsive Nanoparticle Actuators Enhances Myogenesis,” ACS Applied Materials & Interfaces 12, no. 32 (2020): 35903-35917.

[34]

E. Desideri, S. Castelli, C. Dorard, et al., “Impaired Degradation of YAP1 and IL6ST by Chaperone-Mediated Autophagy Promotes Proliferation and Migration of Normal and Hepatocellular Carcinoma Cells,” Autophagy 19, no. 1 (2023): 152-162.

[35]

X. Zhou, W. Li, S. Wang, et al., “YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis,” Cell Reports 27, no. 4 (2019): 1176-1189.e5.

[36]

C. S. Janota, F. J. Calero-Cuenca, and E. R. Gomes, “The Role of the Cell Nucleus in Mechanotransduction,” Current Opinion in Cell Biology 63 (2020): 204-211.

[37]

L. J. Kuo and L. X. Yang, “Gamma-H2AX - a novel biomarker for DNA double-strand breaks,” In Vivo 22, no. 3 (2008): 305-309.

[38]

S. C. Huang, A. M. Smith, B. Everts, et al., “Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation,” Immunity 45, no. 4 (2016): 817-830.

[39]

T. Satoh, O. Takeuchi, A. Vandenbon, et al., “The Jmjd3-Irf4 Axis Regulates M2 Macrophage Polarization and Host Responses Against Helminth Infection,” Nature Immunology 11, no. 10 (2010): 936-944.

[40]

V. E. Abraira and D. D. Ginty, “The Sensory Neurons of Touch,” Neuron 79, no. 4 (2013): 618-639.

[41]

G. Santoni, C. Amantini, M. Santoni, F. Maggi, M. B. Morelli, and A. Santoni, “Mechanosensation and Mechanotransduction in Natural Killer Cells,” Frontiers in Immunology 12 (2021): 688918.

[42]

W. P. Daley and K. M. Yamada, “ECM-Modulated Cellular Dynamics as a Driving Force for Tissue Morphogenesis,” Current Opinion in Genetics & Development 23, no. 4 (2013): 408-414.

[43]

J. Li, B. Hou, S. Tumova, et al., “Piezo1 Integration of Vascular Architecture With Physiological Force,” Nature 515, no. 7526 (2014): 279-282.

[44]

H. I. Harn, R. Ogawa, C. K. Hsu, et al., “The Tension Biology of Wound Healing,” Experimental Dermatology 28, no. 4 (2019): 464-471.

[45]

C. K. Hsu, H. H. Lin, H. I. C. Harn, M. W. Hughes, M. J. Tang, and C. C. Yang, “Mechanical Forces in Skin Disorders,” Journal of Dermatological Science 90, no. 3 (2018): 232-240.

[46]

M. Zhai, S. Cui, L. Li, et al., “Mechanical Force Modulates Alveolar Bone Marrow Mesenchymal Cells Characteristics for Bone Remodeling During Orthodontic Tooth Movement Through Lactate Production,” Cells 11, no. 23 (2022): 3724.

[47]

L. Wang, X. You, S. Lotinun, L. Zhang, N. Wu, and W. Zou, “Mechanical Sensing Protein PIEZO1 Regulates Bone Homeostasis via Osteoblast-Osteoclast Crosstalk,” Nature Communications 11, no. 1 (2020): 282.

[48]

Y. Gao, Q. Min, X. Li, et al., “Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms,” BioMed Research International 2022 (2022): 9668610.

[49]

Z. Huang, Z. Sun, X. Zhang, et al., “Loss of Stretch-Activated Channels, PIEZOs, Accelerates Non-small Cell Lung Cancer Progression and Cell Migration,” Bioscience Reports 39, no. 3 (2019): BSR20181679.

[50]

M. Luo, G. Cai, K. H. Yo, et al., “Compressive Stress Enhances Invasive Phenotype of Cancer Cells via Piezo1 Activation,” BioRxiv 7 (2019): 513218.

[51]

X. Liu, J. Li, Y. Yue, J. Li, M. Wang, and L. Hao, “Mechanisms of Mechanical Force Aggravating Periodontitis: A Review,” Oral Diseases 30 (2023): 895-902.

[52]

J. Sainz de Aja and C. F. Kim, “May the (Mechanical) Force be With AT2,” Cell 180, no. 1 (2020): 20-22.

[53]

M. B. Hilscher, T. Sehrawat, J. P. Arab, et al., “Mechanical Stretch Increases Expression of CXCL1 in Liver Sinusoidal Endothelial Cells to Recruit Neutrophils, Generate Sinusoidal Microthombi, and Promote Portal Hypertension,” Gastroenterology 157, no. 1 (2019): 193-209.e9.

[54]

T. Yamaguchi and K. Morino, “Perivascular Mechanical Environment: A Narrative Review of the Role of Externally Applied Mechanical Force in the Pathogenesis of Atherosclerosis,” Frontiers in Cardiovascular Medicine 9 (2022): 944356.

[55]

J. A. Ross and M. J. Stroud, “THE NUCLEUS: Mechanosensing in Cardiac Disease,” International Journal of Biochemistry & Cell Biology 137 (2021): 106035.

[56]

A. D. Stephens, P. Z. Liu, V. Kandula, et al., “Physicochemical Mechanotransduction Alters Nuclear Shape and Mechanics via Heterochromatin Formation,” Molecular Biology of the Cell 30, no. 17 (2019): 2320-2330.

[57]

O. Morrison and J. Thakur, “Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin,” International Journal of Molecular Sciences 22, no. 13 (2021): 6922.

[58]

W. Zhang, J. Li, K. Suzuki, et al., “Aging Stem Cells. A Werner Syndrome Stem Cell Model Unveils Heterochromatin Alterations as a Driver of Human Aging,” Science 348, no. 6239 (2015): 1160-1163.

[59]

I. Olan, T. Handa, and M. Narita, “Beyond SAHF: An Integrative View of Chromatin Compartmentalization During Senescence,” Current Opinion in Cell Biology 83 (2023): 102206.

[60]

S. Bi, Z. Liu, Z. Wu, et al., “SIRT7 Antagonizes Human Stem Cell Aging as a Heterochromatin Stabilizer,” Protein & Cell 11, no. 7 (2020): 483-504.

[61]

N. S. Mohamad Kamal, S. Safuan, S. Shamsuddin, and P. Foroozandeh, “Aging of the Cells: Insight Into Cellular Senescence and Detection Methods,” European Journal of Cell Biology 99, no. 6 (2020): 151108.

[62]

A. B. Chambliss, S. B. Khatau, N. Erdenberger, et al., “The LINC-Anchored Actin Cap Connects the Extracellular Milieu to the Nucleus for Ultrafast Mechanotransduction,” Scientific Reports 3 (2013): 1087.

[63]

Y. Fu, Z. Jing, T. Chen, et al., “Nanotube Patterning Reduces Macrophage Inflammatory Response via Nuclear Mechanotransduction,” Journal of Nanobiotechnology 21, no. 1 (2023): 229.

[64]

M. I. Maremonti, V. Panzetta, D. Dannhauser, P. A. Netti, and F. Causa, “Wide-Range Viscoelastic Compression Forces in Microfluidics to Probe Cell-Dependent Nuclear Structural and Mechanobiological Responses,” Journal of the Royal Society Interface 19, no. 189 (2022): 20210880.

[65]

A. Vivante, I. Shoval, and Y. Garini, “The Dynamics of Lamin a During the Cell Cycle,” Frontiers in Molecular Biosciences 8 (2021): 705595.

[66]

Y. Wang, J. Y. Shin, K. Nakanishi, et al., “Postnatal Development of Mice With Combined Genetic Depletions of Lamin A/C, Emerin and Lamina-Associated Polypeptide 1,” Human Molecular Genetics 28, no. 15 (2019): 2486-2500.

[67]

L. Chen, F. Jiang, Y. Qiao, et al., “Nucleoskeletal Stiffness Regulates Stem Cell Migration and Differentiation Through Lamin A/C,” Journal of Cellular Physiology 233, no. 7 (2018): 5112-5118.

[68]

E. S. Bell, P. Shah, N. Zuela-Sopilniak, et al., “Low Lamin A Levels Enhance Confined Cell Migration and Metastatic Capacity in Breast Cancer,” Oncogene 41, no. 36 (2022): 4211-4230.

[69]

T. Kozono, K. Tadahira, W. Okumura, et al., “Jaw1/LRMP Has a Role in Maintaining Nuclear Shape via Interaction With SUN Proteins,” Journal of Biochemistry 164, no. 4 (2018): 303-311.

[70]

J. K. Kim, A. Louhghalam, G. Lee, B. W. Schafer, D. Wirtz, and D. H. Kim, “Nuclear Lamin A/C Harnesses the Perinuclear Apical Actin Cables to Protect Nuclear Morphology,” Nature Communications 8, no. 1 (2017): 2123.

[71]

M. J. Mitchell, C. Denais, M. F. Chan, Z. Wang, J. Lammerding, and M. R. King, “Lamin A/C Deficiency Reduces Circulating Tumor Cell Resistance to Fluid Shear Stress,” American Journal of Physiology. Cell Physiology 309, no. 11 (2015): C736-C746.

[72]

I. Dasgupta and D. McCollum, “Control of Cellular Responses to Mechanical Cues Through YAP/TAZ Regulation,” Journal of Biological Chemistry 294, no. 46 (2019): 17693-17706.

[73]

A. Elosegui-Artola, I. Andreu, A. E. M. Beedle, et al., “Force Triggers YAP Nuclear Entry by Regulating Transport Across Nuclear Pores,” Cell 171, no. 6 (2017): 1397-1410.e14.

[74]

T. Panciera, L. Azzolin, M. Cordenonsi, and S. Piccolo, “Mechanobiology of YAP and TAZ in Physiology and Disease,” Nature Reviews. Molecular Cell Biology 18, no. 12 (2017): 758-770.

[75]

M. Aragona, A. Sifrim, M. Malfait, et al., “Mechanisms of Stretch-Mediated Skin Expansion at Single-Cell Resolution,” Nature 584, no. 7820 (2020): 268-273.

[76]

X. Zhou, R. A. Franklin, M. Adler, et al., “Microenvironmental Sensing by Fibroblasts Controls Macrophage Population Size,” Proceedings of the National Academy of Sciences of the United States of America 119, no. 32 (2022): e2205360119.

[77]

S. Wang, E. Englund, P. Kjellman, et al., “CCM3 Is a Gatekeeper in Focal Adhesions Regulating Mechanotransduction and YAP/TAZ Signalling,” Nature Cell Biology 23, no. 7 (2021): 758-770.

[78]

K. Hasegawa, S. Fujii, S. Matsumoto, Y. Tajiri, A. Kikuchi, and T. Kiyoshima, “YAP Signaling Induces PIEZO1 to Promote Oral Squamous Cell Carcinoma Cell Proliferation,” Journal of Pathology 253, no. 1 (2021): 80-93.

[79]

S. Yang, F. Huang, F. Zhang, X. Sheng, W. Fan, and W. L. Dissanayaka, “Emerging Roles of YAP/TAZ in Tooth and Surrounding: From Development to Regeneration,” Stem Cell Reviews and Reports 19, no. 6 (2023): 1659-1675.

[80]

I. Andreu, I. Granero-Moya, S. Garcia-Manyes, and P. Roca-Cusachs, “Understanding the Role of Mechanics in Nucleocytoplasmic Transport,” APL Bioengineering 6, no. 2 (2022): 020901.

[81]

C. Guilluy, L. D. Osborne, L. van Landeghem, et al., “Isolated Nuclei Adapt to Force and Reveal a Mechanotransduction Pathway in the Nucleus,” Nature Cell Biology 16, no. 4 (2014): 376-381.

[82]

Y. Liang, P. H. Chiu, K. Y. Yip, and S. Y. Chan, “Subcellular Localization of SUN2 Is Regulated by Lamin A and Rab5,” PLoS One 6, no. 5 (2011): e20507.

[83]

F. Haque, D. Mazzeo, J. T. Patel, et al., “Mammalian SUN Protein Interaction Networks at the Inner Nuclear Membrane and Their Role in Laminopathy Disease Processes,” Journal of Biological Chemistry 285, no. 5 (2010): 3487-3498.

[84]

F. Chiarini, F. Paganelli, T. Balestra, et al., “Lamin A and the LINC Complex Act as Potential Tumor Suppressors in Ewing Sarcoma,” Cell Death & Disease 13, no. 4 (2022): 346.

[85]

E. Mattioli, M. Columbaro, C. Capanni, et al., “Prelamin A-Mediated Recruitment of SUN1 to the Nuclear Envelope Directs Nuclear Positioning in Human Muscle,” Cell Death and Differentiation 18, no. 8 (2011): 1305-1315.

[86]

L. Krshnan, W. S. Siu, M. van de Weijer, et al., “Regulated Degradation of the Inner Nuclear Membrane Protein SUN2 Maintains Nuclear Envelope Architecture and Function,” eLife 11 (2022): e81573.

[87]

D. Amiad Pavlov, C. P. Unnikannan, D. Lorber, et al., “The LINC Complex Inhibits Excessive Chromatin Repression,” Cells 12, no. 6 (2023): 932.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/