Single-Cell Multiomics Reveals TCR Clonotype-Specific Phenotype and Stemness Heterogeneity of T-ALL Cells

Songnan Sui , Xiaolei Wei , Yue Zhu , Qiuyue Feng , Xianfeng Zha , Lipeng Mao , Boya Huang , Wen Lei , Guobing Chen , Huien Zhan , Huan Chen , Ru Feng , Chengwu Zeng , Yangqiu Li , Oscar Junhong Luo

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13786

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13786 DOI: 10.1111/cpr.13786
ORIGINAL ARTICLE

Single-Cell Multiomics Reveals TCR Clonotype-Specific Phenotype and Stemness Heterogeneity of T-ALL Cells

Author information +
History +
PDF

Abstract

T-cell acute lymphoblastic leukaemia (T-ALL) is a heterogeneous malignant disease with high relapse and mortality rates. To characterise the multiomics features of T-ALL, we conducted integrative analyses using single-cell RNA, TCR and chromatin accessibility sequencing on pre- and post-treatment peripheral blood and bone marrow samples of the same patients. We found that there is transcriptional rewiring of gene regulatory networks in T-ALL cells. Some transcription factors, such as TCF3 and KLF3, showed differences in activity and expression levels between T-ALL and normal T cells and were associated with the prognosis of T-ALL patients. Furthermore, we identified multiple malignant TCR clonotypes among the T-ALL cells, where the clonotypes consisted of distinct combinations of the same TCR α and β chain per patient. The T-ALL cells displayed clonotype-specific immature thymocyte cellular characteristics and response to chemotherapy. Remarkably, T-ALL cells with an orphan TCRβ chain displayed the strongest stemness and resistance to chemotherapy. Our study provided transcriptome and epigenome characterisation of T-ALL cells categorised by TCR clonotypes, which may be helpful for the development of novel predictive markers to evaluate treatment effectiveness for T-ALL.

Keywords

clonotype-specific T-ALL characteristics / immature thymocyte / single-cell multiomics / T-cell acute lymphoblastic leukemia (T-ALL) / T-cell receptor (TCR) clonotype

Cite this article

Download citation ▾
Songnan Sui, Xiaolei Wei, Yue Zhu, Qiuyue Feng, Xianfeng Zha, Lipeng Mao, Boya Huang, Wen Lei, Guobing Chen, Huien Zhan, Huan Chen, Ru Feng, Chengwu Zeng, Yangqiu Li, Oscar Junhong Luo. Single-Cell Multiomics Reveals TCR Clonotype-Specific Phenotype and Stemness Heterogeneity of T-ALL Cells. Cell Proliferation, 2025, 58(4): e13786 DOI:10.1111/cpr.13786

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Sanchez-Martin and A. Ferrando, “The NOTCH1-MYC Highway Toward T-Cell Acute Lymphoblastic Leukemia,” Blood 129, no. 9 (2017): 1124-1133.

[2]

M. Simonin, G. P. Andrieu, R. Birsen, et al., “Prognostic Value and Oncogenic Landscape of TP53 Alterations in Adult and Pediatric T-ALL,” Blood 141, no. 11 (2023): 1353-1358.

[3]

M. Simonin, L. Lhermitte, M. E. Dourthe, et al., “IKZF1 Alterations Predict Poor Prognosis in Adult and Pediatric T-ALL,” Blood 137, no. 12 (2021): 1690-1694.

[4]

M. Simonin, A. Schmidt, C. Bontoux, et al., “Oncogenetic Landscape and Clinical Impact of IDH1 and IDH2 Mutations in T-ALL,” Journal of Hematology & Oncology 14, no. 1 (2021): 74.

[5]

D. I. Marks and C. Rowntree, “Management of Adults With T-Cell Lymphoblastic Leukemia,” Blood 129, no. 9 (2017): 1134-1142.

[6]

L. C. Fleischer, H. T. Spencer, and S. S. Raikar, “Targeting T Cell Malignancies Using CAR-Based Immunotherapy: Challenges and Potential Solutions,” Journal of Hematology & Oncology 12, no. 1 (2019): 141.

[7]

Y. Kogure, T. Kameda, J. Koya, et al., “Whole-Genome Landscape of Adult T-Cell Leukemia/Lymphoma,” Blood 139, no. 7 (2022): 967-982.

[8]

L. Alberti-Servera, S. Demeyer, I. Govaerts, et al., “Single-Cell DNA Amplicon Sequencing Reveals Clonal Heterogeneity and Evolution in T-Cell Acute Lymphoblastic Leukemia,” Blood 137, no. 6 (2021): 801-811.

[9]

A. C. Carpenter and R. Bosselut, “Decision Checkpoints in the Thymus,” Nature Immunology 11, no. 8 (2010): 666-673.

[10]

F. Famili, A. S. Wiekmeijer, and F. J. Staal, “The Development of T Cells From Stem Cells in Mice and Humans,” Future Science OA 3, no. 3 (2017): FSO186.

[11]

D. K. Shah and J. C. Zuniga-Pflucker, “An Overview of the Intrathymic Intricacies of T Cell Development,” Journal of Immunology 192, no. 9 (2014): 4017-4023.

[12]

A. Krueger, N. Zietara, and M. Lyszkiewicz, “T Cell Development by the Numbers,” Trends in Immunology 38, no. 2 (2017): 128-139.

[13]

N. Tamehiro, H. Oda, M. Shirai, and H. Suzuki, “Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint,” PLoS One 10, no. 6 (2015): e0131047.

[14]

A. Dutta, B. Zhao, and P. E. Love, “New Insights Into TCR Beta-Selection,” Trends in Immunology 42, no. 8 (2021): 735-750.

[15]

T. Kreslavsky, M. Gleimer, M. Miyazaki, et al., “Beta-Selection-Induced Proliferation Is Required for Alphabeta T Cell Differentiation,” Immunity 37, no. 5 (2012): 840-853.

[16]

T. K. Teague, C. Tan, J. H. Marino, et al., “CD28 Expression Redefines Thymocyte Development During the Pre-T to DP Transition,” International Immunology 22, no. 5 (2010): 387-397.

[17]

I. Aifantis, M. Mandal, K. Sawai, A. Ferrando, and T. Vilimas, “Regulation of T-Cell Progenitor Survival and Cell-Cycle Entry by the Pre-T-Cell Receptor,” Immunological Reviews 209 (2006): 159-169.

[18]

C. S. Tremblay, T. Hoang, and T. Hoang, “Early T Cell Differentiation Lessons From T-Cell Acute Lymphoblastic Leukemia,” Progress in Molecular Biology and Translational Science 92 (2010): 121-156.

[19]

Y. Onishi, E. Furukawa, M. Kamata, et al., “Outcomes of Adult Patients With Early T-Cell Precursor (ETP) Acute Lymphoblastic Leukemia/Lymphoma (ALL) and Non-ETP T-ALL,” International Journal of Hematology 117, no. 5 (2023): 738-747.

[20]

P. Borgulya, H. Kishi, Y. Uematsu, and H. von Boehmer, “Exclusion and Inclusion of Alpha and Beta T Cell Receptor Alleles,” Cell 69, no. 3 (1992): 529-537.

[21]

A. M. Jackson and M. S. Krangel, “Turning T-Cell Receptor Beta Recombination on and Off: More Questions Than Answers,” Immunological Reviews 209 (2006): 129-141.

[22]

E. Padovan, G. Casorati, P. Dellabona, S. Meyer, M. Brockhaus, and A. Lanzavecchia, “Expression of Two T Cell Receptor Alpha Chains: Dual Receptor T Cells,” Science 262, no. 5132 (1993): 422-424.

[23]

H. T. Petrie, F. Livak, D. G. Schatz, A. Strasser, I. N. Crispe, and K. Shortman, “Multiple Rearrangements in T Cell Receptor Alpha Chain Genes Maximize the Production of Useful Thymocytes,” Journal of Experimental Medicine 178, no. 2 (1993): 615-622.

[24]

A. Warmflash and A. R. Dinner, “A Model for TCR Gene Segment Use,” Journal of Immunology 177, no. 6 (2006): 3857-3864.

[25]

M. J. T. Stubbington, T. Lonnberg, V. Proserpio, et al., “T Cell Fate and Clonality Inference From Single-Cell Transcriptomes,” Nature Methods 13, no. 4 (2016): 329-332.

[26]

A. A. Eltahla, S. Rizzetto, M. R. Pirozyan, et al., “Linking the T Cell Receptor to the Single Cell Transcriptome in Antigen-Specific Human T Cells,” Immunology and Cell Biology 94, no. 6 (2016): 604-611.

[27]

B. L. Brady, N. C. Steinel, and C. H. Bassing, “Antigen Receptor Allelic Exclusion: An Update and Reappraisal,” Journal of Immunology 185, no. 7 (2010): 3801-3808.

[28]

C. Y. Huang, B. P. Sleckman, and O. Kanagawa, “Revision of T Cell Receptor Alpha Chain Genes Is Required for Normal T Lymphocyte Development,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 40 (2005): 14356-14361.

[29]

S. Chen, X. Huang, H. Zheng, et al., “The Evolution of Malignant and Reactive Gammadelta + T Cell Clones in a Relapse T-ALL Case After Allogeneic Stem Cell Transplantation,” Molecular Cancer 12 (2013): 73.

[30]

E. H. Joo, J. H. Bae, J. Park, et al., “Deconvolution of Adult T-Cell Leukemia/Lymphoma With Single-Cell RNA-Seq Using Frozen Archived Skin Tissue Reveals New Subset of Cancer-Associated Fibroblast,” Frontiers in Immunology 13 (2022): 856363.

[31]

J. Zhang, Y. Duan, P. Wu, et al., “Clonal Evolution Dissection Reveals High MSI2 Level Promotes Chemo-Resistance in T-Cell Acute Lymphoblastic Leukemia,” Blood 142 (2023): 846.

[32]

M. Cordes, K. Cante-Barrett, E. B. van den Akker, et al., “Single-Cell Immune Profiling Reveals Thymus-Seeding Populations, T Cell Commitment, and Multilineage Development in the Human Thymus,” Science Immunology 7, no. 77 (2022): eade0182.

[33]

J. E. Park, R. A. Botting, C. Dominguez Conde, et al., “A Cell Atlas of Human Thymic Development Defines T Cell Repertoire Formation,” Science 367, no. 6480 (2020): eaay3224.

[34]

F. Wang, Z. Qi, Y. Yao, et al., “Exploring the Stage-Specific Roles of Tcf-1 in T Cell Development and Malignancy at Single-Cell Resolution,” Cellular & Molecular Immunology 18, no. 3 (2020): 644-659.

[35]

C.-S. Li, F. Tang, P. Zhang, et al., “Trap1a Is an X-Linked and Cell-Intrinsic Regulator of Thymocyte Development,” Cellular & Molecular Immunology 14, no. 8 (2016): 685-692.

[36]

Y. Zhao, J. Cao, H. Xu, et al., “Optimizing In Vitro T Cell Differentiation by Using Induced Pluripotent Stem Cells With GFP-RUNX1 and mCherry-TCF7 Labelling,” Cell Proliferation 57 (2024): e13661.

[37]

I. H. Goenawan, K. Bryan, and D. J. Lynn, “DyNet: Visualization and Analysis of Dynamic Molecular Interaction Networks,” Bioinformatics 32, no. 17 (2016): 2713-2715.

[38]

L. Su, Z. Hu, and Y. G. Yang, “Role of CXCR4 in the Progression and Therapy of Acute Leukaemia,” Cell Proliferation 54, no. 7 (2021): e13076.

[39]

D. Caracciolo, A. Mancuso, N. Polera, et al., “The Emerging Scenario of Immunotherapy for T-Cell Acute Lymphoblastic Leukemia: Advances, Challenges and Future Perspectives,” Experimental Hematology & Oncology 12, no. 1 (2023): 5.

[40]

Y. Tan, L. Shan, L. Zhao, et al., “Long-Term Follow-Up of Donor-Derived CD7 CAR T-Cell Therapy in Patients With T-Cell Acute Lymphoblastic Leukemia,” Journal of Hematology & Oncology 16, no. 1 (2023): 34.

[41]

G. S. Gulati, S. S. Sikandar, D. J. Wesche, et al., “Single-Cell Transcriptional Diversity Is a Hallmark of Developmental Potential,” Science 367, no. 6476 (2020): 405-411.

[42]

H. Zheng, X. Wang, Y. Ma, et al., “The TCR Gammadelta Repertoire and Relative Gene Expression Characteristics of T-ALL Cases With Biclonal Malignant Vdelta1 and Vdelta2 T Cells,” DNA and Cell Biology 33, no. 1 (2014): 49-56.

[43]

C. Huang and O. Kanagawa, “Ordered and Coordinated Rearrangement of the TCR Alpha Locus: Role of Secondary Rearrangement in Thymic Selection,” Journal of Immunology 166, no. 4 (2001): 2597-2601.

[44]

H. P. Dai, W. Cui, Q. Y. Cui, et al., “Haploidentical CD7 CAR T-Cells Induced Remission in a Patient With TP53 Mutated Relapsed and Refractory Early T-Cell Precursor Lymphoblastic Leukemia/Lymphoma,” Biomarker Research 10, no. 1 (2022): 6.

[45]

P. Anand, A. Guillaumet-Adkins, V. Dimitrova, et al., “Single-Cell RNA-Seq Reveals Developmental Plasticity With Coexisting Oncogenic States and Immune Evasion Programs in ETP-ALL,” Blood 137, no. 18 (2021): 2463-2480.

[46]

F. Tarantini, C. Cumbo, L. Anelli, et al., “Inside the Biology of Early T-Cell Precursor Acute Lymphoblastic Leukemia: The Perfect Trick,” Biomarker Research 9, no. 1 (2021): 89.

[47]

J. Frede, P. Anand, N. Sotudeh, et al., “Dynamic Transcriptional Reprogramming Leads to Immunotherapeutic Vulnerabilities in Myeloma,” Nature Cell Biology 23, no. 11 (2021): 1199-1211.

[48]

S. M. Shaffer, M. C. Dunagin, S. R. Torborg, et al., “Rare Cell Variability and Drug-Induced Reprogramming as a Mode of Cancer Drug Resistance,” Nature 546, no. 7658 (2017): 431-435.

[49]

X. Xu, W. Zhang, L. Xuan, et al., “PD-1 Signalling Defines and Protects Leukaemic Stem Cells From T Cell Receptor-Induced Cell Death in T Cell Acute Lymphoblastic Leukaemia,” Nature Cell Biology 25, no. 1 (2023): 170-182.

[50]

A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating Single-Cell Transcriptomic Data Across Different Conditions, Technologies, and Species,” Nature Biotechnology 36, no. 5 (2018): 411-420.

[51]

I. Korsunsky, N. Millard, J. Fan, et al., “Fast, Sensitive and Accurate Integration of Single-Cell Data With Harmony,” Nature Methods 16, no. 12 (2019): 1289-1296.

[52]

J. M. Granja, M. R. Corces, S. E. Pierce, et al., “ArchR Is a Scalable Software Package for Integrative Single-Cell Chromatin Accessibility Analysis,” Nature Genetics 53, no. 3 (2021): 403-411.

[53]

C. Y. McLean, D. Bristor, M. Hiller, et al., “GREAT Improves Functional Interpretation of Cis-Regulatory Regions,” Nature Biotechnology 28, no. 5 (2010): 495-501.

[54]

S. Aibar, C. B. Gonzalez-Blas, T. Moerman, et al., “SCENIC: Single-Cell Regulatory Network Inference and Clustering,” Nature Methods 14, no. 11 (2017): 1083-1086.

[55]

R. L. Camp, M. Dolled-Filhart, and D. L. Rimm, “X-Tile: A New Bio-Informatics Tool for Biomarker Assessment and Outcome-Based Cut-Point Optimization,” Clinical Cancer Research 10, no. 21 (2004): 7252-7259.

[56]

C. Chen, C. Liang, S. Wang, et al., “Expression Patterns of Immune Checkpoints in Acute Myeloid Leukemia,” Journal of Hematology & Oncology 13, no. 1 (2020): 28.

[57]

J. M. Fernandez, V. de la Torre, D. Richardson, et al., “The BLUEPRINT Data Analysis Portal,” Cell Systems 3, no. 5 (2016): 491-495.

[58]

M. Schubert, B. Klinger, M. Klunemann, et al., “Perturbation-Response Genes Reveal Signaling Footprints in Cancer Gene Expression,” Nature Communications 9, no. 1 (2018): 20.

[59]

T. Wu, E. Hu, S. Xu, et al., “ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data,” Innovations 2, no. 3 (2021): 100141.

[60]

V. Bergen, M. Lange, S. Peidli, F. A. Wolf, and F. J. Theis, “Generalizing RNA Velocity to Transient Cell States Through Dynamical Modeling,” Nature Biotechnology 38, no. 12 (2020): 1408-1414.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/