A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies

Ke Zhang , Yanqiu Wang , Qi An , Hengjing Ji , Defu Wu , Xuri Li , Lingge Suo , Chun Zhang , Xuran Dong

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13785

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e13785 DOI: 10.1111/cpr.13785
ORIGINAL ARTICLE

A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies

Author information +
History +
PDF

Abstract

Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.

Keywords

cell therapies / chemically induced pluripotent stem cells / differentiation / reprogramming / retinal diseases / retinal pigment epithelium

Cite this article

Download citation ▾
Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong. A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies. Cell Proliferation, 2025, 58(5): e13785 DOI:10.1111/cpr.13785

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Soldner and R. Jaenisch, “Stem Cells, Genome Editing, and the Path to Translational Medicine,” Cell 175 (2018): 615-632, https://doi.org/10.1016/j.cell.2018.09.010.

[2]

R. G. Rowe and G. Q. Daley, “Induced Pluripotent Stem Cells in Disease Modelling and Drug Discovery,” Nature Reviews. Genetics 20 (2019): 377-388, https://doi.org/10.1038/s41576-019-0100-z.

[3]

S. Yamanaka, “Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges,” Cell Stem Cell 27 (2020): 523-531, https://doi.org/10.1016/j.stem.2020.09.014.

[4]

A. H. Kashani, J. S. Lebkowski, F. M. Rahhal, et al., “A Bioengineered Retinal Pigment Epithelial Monolayer for Advanced, Dry Age-Related Macular Degeneration,” Science Translational Medicine 10 (2018): eaao4097, https://doi.org/10.1126/scitranslmed.aao4097.

[5]

S. D. Schwartz, J. P. Hubschman, G. Heilwell, et al., “Embryonic Stem Cell Trials for Macular Degeneration: A Preliminary Report,” Lancet 379 (2012): 713-720, https://doi.org/10.1016/S0140-6736(12)60028-2.

[6]

S. D. Schwartz, C. D. Regillo, B. L. Lam, et al., “Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients With Age-Related Macular Degeneration and Stargardt's Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies,” Lancet 385 (2015): 509-516, https://doi.org/10.1016/S0140-6736(14)61376-3.

[7]

M. Mandai, Y. Kurimoto, and M. Takahashi, “Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration,” New England Journal of Medicine 377 (2017): 792-793, https://doi.org/10.1056/NEJMc1706274.

[8]

L. da Cruz, K. Fynes, O. Georgiadis, et al., “Phase 1 Clinical Study of an Embryonic Stem Cell-Derived Retinal Pigment Epithelium Patch in Age-Related Macular Degeneration,” Nature Biotechnology 36 (2018): 328-337, https://doi.org/10.1038/nbt.4114.

[9]

R. H. Guymer and T. G. Campbell, “Age-Related Macular Degeneration,” Lancet 401 (2023): 1459-1472, https://doi.org/10.1016/S0140-6736(22)02609-5.

[10]

S. Kobold, N. Bultjer, G. Stacey, S. C. Mueller, A. Kurtz, and N. Mah, “History and Current Status of Clinical Studies Using Human Pluripotent Stem Cells,” Stem Cell Reports 18 (2023): 1592-1598, https://doi.org/10.1016/j.stemcr.2023.03.005.

[11]

K. Garber, “RIKEN Suspends First Clinical Trial Involving Induced Pluripotent Stem Cells,” Nature Biotechnology 33 (2015): 890-891, https://doi.org/10.1038/nbt0915-890.

[12]

E. Neofytou, C. G. O'Brien, L. A. Couture, and J. C. Wu, “Hurdles to Clinical Translation of Human Induced Pluripotent Stem Cells,” Journal of Clinical Investigation 12 (2015): 2551-2557, https://doi.org/10.1172/JCI80575.

[13]

S. Liuyang, G. Wang, Y. Wang, et al., “Highly Efficient and Rapid Generation of Human Pluripotent Stem Cells by Chemical Reprogramming,” Cell Stem Cell 30, no. 4 (2023): 450-459.e9, https://doi.org/10.1016/j.stem.2023.02.008.

[14]

P. Hou, Y. Li, X. Zhang, et al., “Pluripotent Stem Cells Induced From Mouse Somatic Cells by Small-Molecule Compounds,” Science 341 (2013): 651-654, https://doi.org/10.1126/science.1239278.

[15]

J. Guan, G. Wang, J. Wang, et al., “Chemical Reprogramming of Human Somatic Cells to Pluripotent Stem Cells,” Nature 605 (2022): 325-331, https://doi.org/10.1038/s41586-022-04593-5.

[16]

M. Zhang, L. Wang, K. An, et al., “Lower Genomic Stability of Induced Pluripotent Stem Cells Reflects Increased Non-Homologous End Joining,” Cancer Communications (London) 38 (2018): 49, https://doi.org/10.1186/s40880-018-0313-0.

[17]

K. Ye, Y. Takemoto, A. Ito, et al., “Reproducible Production and Image-Based Quality Evaluation of Retinal Pigment Epithelium Sheets From Human Induced Pluripotent Stem Cells,” Scientific Reports 10 (2020): 14387, https://doi.org/10.1038/s41598-020-70979-y.

[18]

R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: Short Oligonucleotide Alignment Program,” Bioinformatics 24 (2008): 713-714, https://doi.org/10.1093/bioinformatics/btn025.

[19]

B. Li and C. N. Dewey, “RSEM: Accurate Transcript Quantification From RNA-Seq Data With or Without a Reference Genome,” BMC Bioinformatics 12 (2011): 323, https://doi.org/10.1186/1471-2105-12-323.

[20]

K. Raivo, “Package ‘pheatmap’,” 2019-01-04 13:50:12 UTC.

[21]

M. I. Love, W. Huber, and S. Anders, “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With DESeq2,” Genome Biology 15 (2014): 550, https://doi.org/10.1186/s13059-014-0550-8.

[22]

D. A. Lutz, Y. Guo, and B. J. McLaughlin, “Natural, High-Mannose Glycoproteins Inhibit ROS Binding and Ingestion by RPE Cell Cultures,” Experimental Eye Research 61 (1995): 487-493, https://doi.org/10.1016/s0014-4835(05)80144-7.

[23]

H. Lin and D. O. Clegg, “Integrin alphavbeta5 Participates in the Binding of Photoreceptor Rod Outer Segments During Phagocytosis by Cultured Human Retinal Pigment Epithelium,” Investigative Ophthalmology & Visual Science 39 (1998): 1703-1712.

[24]

N. Shyh-Chang, H. Zhu, T. Yvanka de Soysa, et al., “Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism,” Cell 155 (2013): 778-792, https://doi.org/10.1016/j.cell.2013.09.059.

[25]

R. Diacou, P. Nandigrami, A. Fiser, W. Liu, R. Ashery-Padan, and A. Cvekl, “Cell Fate Decisions, Transcription Factors and Signaling During Early Retinal Development,” Progress in Retinal and Eye Research 91 (2022): 101093, https://doi.org/10.1016/j.preteyeres.2022.101093.

[26]

A. Maminishkis, S. Chen, S. Jalickee, et al., “Confluent Monolayers of Cultured Human Fetal Retinal Pigment Epithelium Exhibit Morphology and Physiology of Native Tissue,” Investigative Ophthalmology & Visual Science 47 (2006): 3612-3624, https://doi.org/10.1167/iovs.05-1622.

[27]

S. Sonoda, C. Spee, E. Barron, S. J. Ryan, R. Kannan, and D. R. Hinton, “A Protocol for the Culture and Differentiation of Highly Polarized Human Retinal Pigment Epithelial Cells,” Nature Protocols 4 (2009): 662-673, https://doi.org/10.1038/nprot.2009.33.

[28]

E. K. Markert, H. Klein, C. Viollet, et al., “Transcriptional Comparison of Adult Human Primary Retinal Pigment Epithelium, Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium, and ARPE19 Cells,” Frontiers in Cell and Development Biology 10 (2022): 910040, https://doi.org/10.3389/fcell.2022.910040.

[29]

N. V. Strunnikova, A. Maminishkis, J. J. Barb, et al., “Transcriptome Analysis and Molecular Signature of Human Retinal Pigment Epithelium,” Human Molecular Genetics 19 (2010): 2468-2486, https://doi.org/10.1093/hmg/ddq129.

[30]

T. A. Ferguson and D. R. Green, “Autophagy and Phagocytosis Converge for Better Vision,” Autophagy 10 (2014): 165-167, https://doi.org/10.4161/auto.26735.

[31]

A. Plaza Reyes, S. Petrus-Reurer, S. Padrell Sánchez, et al., “Identification of Cell Surface Markers and Establishment of Monolayer Differentiation to Retinal Pigment Epithelial Cells,” Nature Communications 11 (2020): 1609, https://doi.org/10.1038/s41467-020-15326-5.

[32]

P. Choudhary, H. Booth, A. Gutteridge, et al., “Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage,” Stem Cells Translational Medicine 6 (2017): 490-501, https://doi.org/10.5966/sctm.2016-0088.

[33]

T. Kuroda, S. Ando, Y. Takeno, A. Kishino, and T. Kimura, “Robust Induction of Retinal Pigment Epithelium Cells From Human Induced Pluripotent Stem Cells by Inhibiting FGF/MAPK Signaling,” Stem Cell Research 39 (2019): 101514, https://doi.org/10.1016/j.scr.2019.101514.

[34]

L. Lange, M. A. Esteban, and A. Schambach, “Back to Pluripotency: Fully Chemically Induced Reboot of Human Somatic Cells,” Signal Transduction and Targeted Therapy 7 (2022): 244, https://doi.org/10.1038/s41392-022-01109-5.

[35]

D. E. Buchholz, S. T. Hikita, T. J. Rowland, et al., “Derivation of Functional Retinal Pigmented Epithelium From Induced Pluripotent Stem Cells,” Stem Cells 27 (2009): 2427-2434, https://doi.org/10.1002/stem.189.

[36]

J. Maruotti, S. R. Sripathi, K. Bharti, et al., “Small-Molecule-Directed, Efficient Generation of Retinal Pigment Epithelium From Human Pluripotent Stem Cells,” Proceedings of the National Academy of Sciences of the United States of America 112, no. 35 (2015): 10950-10955, https://doi.org/10.1073/pnas.1422818112.

[37]

F. J. Rouhani, X. Zou, P. Danecek, et al., “Substantial Somatic Genomic Variation and Selection for BCOR Mutations in Human Induced Pluripotent Stem Cells,” Nature Genetics 54 (2022): 1406-1416, https://doi.org/10.1038/s41588-022-01147-3.

[38]

E. Lezmi, J. Jung, and N. Benvenisty, “High Prevalence of Acquired Cancer-Related Mutations in 146 Human Pluripotent Stem Cell Lines and Their Differentiated Derivatives,” Nature Biotechnology 42 (2024): 1667-1671, https://doi.org/10.1038/s41587-023-02090-2.

[39]

C. V. Dang, “MYC on the Path to Cancer,” Cell 149 (2012): 22-35, https://doi.org/10.1016/j.cell.2012.03.003.

[40]

Y. J. Wang and M. Herlyn, “The Emerging Roles of Oct4 in Tumor-Initiating Cells,” American Journal of Physiology. Cell Physiology 309 (2015): C709-C718, https://doi.org/10.1152/ajpcell.00212.2015.

[41]

L. N. Ding, Y. Y. Yu, C. J. Ma, C. J. Lei, and H. B. Zhang, “SOX2-Associated Signaling Pathways Regulate Biological Phenotypes of Cancers,” Biomedicine & Pharmacotherapy 160 (2023): 114336, https://doi.org/10.1016/j.biopha.2023.114336.

[42]

S. Wang, Y. Du, B. Zhang, et al., “Transplantation of Chemically Induced Pluripotent Stem-Cell-Derived Islets Under Abdominal Anterior Rectus Sheath in a Type 1 Diabetes Patient,” Cell 187 (2024): P6152-P6164, https://doi.org/10.1016/j.cell.2024.09.004.

[43]

B. T. McLelland, B. Lin, A. Mathur, et al., “Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats,” Investigative Ophthalmology & Visual Science 59 (2018): 2586-2603, https://doi.org/10.1167/iovs.17-23646.

[44]

A. O. Barnea-Cramer, W. Wang, S. J. Lu, et al., “Function of Human Pluripotent Stem Cell-Derived Photoreceptor Progenitors in Blind Mice,” Scientific Reports 6 (2016): 29784, https://doi.org/10.1038/srep29784.

[45]

Y. Hirami, M. Mandai, S. Sugita, et al., “Safety and Stable Survival of Stem-Cell-Derived Retinal Organoid for 2 Years in Patients With Retinitis Pigmentosa,” Cell Stem Cell 30 (2023): 1585-1596.e6, https://doi.org/10.1016/j.stem.2023.11.004.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/