CTCF Point Mutation at R567 Disrupts Mouse Heart Development via 3D Genome Rearrangement and Transcription Dysregulation

Huawei Ren , Hongxin Zhong , Jie Zhang , Yuli Lu , Gongcheng Hu , Weixun Duan , Ning Ma , Hongjie Yao

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13783

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13783 DOI: 10.1111/cpr.13783
ORIGINAL ARTICLE

CTCF Point Mutation at R567 Disrupts Mouse Heart Development via 3D Genome Rearrangement and Transcription Dysregulation

Author information +
History +
PDF

Abstract

CTCF plays a vital role in shaping chromatin structure and regulating gene expression. Clinical studies have associated CTCF mutations with congenital developmental abnormalities, including congenital cardiomyopathy. In this study, we investigated the impact of the homozygous CTCF-R567W (CtcfR567W/R567W) mutation on cardiac tissue morphogenesis during mouse embryonic development. Our results reveal significant impairments in heart development, characterised by ventricular muscle trabecular hyperplasia and reduced ventricular cavity sizes. We also observe a marked downregulation of genes involved in sarcomere assembly, calcium ion transport, and mitochondrial function in heart tissues from homozygous mice. Furthermore, the CtcfR567W/R567W mutation disrupts CTCF's interaction with chromatin, resulting in alterations to topologically associating domain (TAD) structure within specific genomic regions and diminishing crucial promoter-enhancer interactions necessary for cardiac development. Additionally, we find that the heterozygous CTCF-R567W (Ctcf+/R567W) mutation significantly compromises cardiac contractility in 8-week-old mice. This study elucidates the mechanism by which the CTCF-R567W mutation hampers cardiac development, underscoring the essential role of CTCF-R567 in embryonic heart development and maturation.

Keywords

3D chromatin architecture / CTCF mutation / embryonic heart development / mouse / transcriptional regulation

Cite this article

Download citation ▾
Huawei Ren, Hongxin Zhong, Jie Zhang, Yuli Lu, Gongcheng Hu, Weixun Duan, Ning Ma, Hongjie Yao. CTCF Point Mutation at R567 Disrupts Mouse Heart Development via 3D Genome Rearrangement and Transcription Dysregulation. Cell Proliferation, 2025, 58(4): e13783 DOI:10.1111/cpr.13783

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. P. Rao Suhas, H. Huntley Miriam, C. Durand Neva, et al., “A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping,” Cell 159 (2014): 1665-1680.

[2]

L.-H. Chang, S. Ghosh, and D. Noordermeer, “TADs and Their Borders: Free Movement or Building a Wall,” Journal of Molecular Biology 432 (2020): 643-652.

[3]

X. Ji, B. Dadon Daniel, E. Powell Benjamin, et al., “3D Chromosome Regulatory Landscape of Human Pluripotent Cells,” Cell Stem Cell 18 (2016): 262-275.

[4]

A. Despang, R. Schöpflin, M. Franke, et al., “Functional Dissection of the Sox9-Kcnj2 Locus Identifies Nonessential and Instructive Roles of TAD Architecture,” Nature Genetics 51 (2019): 1263-1271.

[5]

M. S. van Ruiten and B. D. Rowland, “On the Choreography of Genome Folding: A Grand Pas de Deux of Cohesin and CTCF,” Current Opinion in Cell Biology 70 (2021): 84-90.

[6]

Y. Song, Z. Liang, J. Zhang, et al., “CTCF Functions as an Insulator for Somatic Genes and a Chromatin Remodeler for Pluripotency Genes During Reprogramming,” Cell Reports 39 (2022): 110626.

[7]

W. Li, L. Shang, K. Huang, J. Li, Z. Wang, and H. Yao, “Identification of Critical Base Pairs Required for CTCF Binding in Motif M1 and M2,” Protein & Cell 8 (2017): 544-549.

[8]

M. Yin, J. Wang, M. Wang, et al., “Molecular Mechanism of Directional CTCF Recognition of a Diverse Range of Genomic Sites,” Cell Research 27 (2017): 1365-1377.

[9]

J. Li, K. Huang, G. Hu, et al., “An Alternative CTCF Isoform Antagonizes Canonical CTCF Occupancy and Changes Chromatin Architecture to Promote Apoptosis,” Nature Communications 10 (2019): 1535.

[10]

B. Dehingia, M. Milewska, M. Janowski, and A. Pękowska, “CTCF Shapes Chromatin Structure and Gene Expression in Health and Disease,” EMBO Reports 23 (2022): e55146.

[11]

Y. A. Guo, M. M. Chang, W. Huang, et al., “Mutation Hotspots at CTCF Binding Sites Coupled to Chromosomal Instability in Gastrointestinal Cancers,” Nature Communications 9 (2018): 1520.

[12]

E. P. Nora, A. Goloborodko, A.-L. Valton, et al., “Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains From Genomic Compartmentalization,” Cell 169 (2017): 930-944.

[13]

D. Hnisz, A. S. Weintraub, D. S. Day, et al., “Activation of Proto-Oncogenes by Disruption of Chromosome Neighborhoods,” Science 351 (2016): 1454-1458.

[14]

R. Katainen, K. Dave, E. Pitkänen, et al., “CTCF/Cohesin-Binding Sites Are Frequently Mutated in Cancer,” Nature Genetics 47 (2015): 818-821.

[15]

R. Saldaña-Meyer, E. González-Buendía, G. Guerrero, et al., “CTCF Regulates the Human p53 Gene Through Direct Interaction With Its Natural Antisense Transcript, Wrap53,” Genes & Development 28 (2014): 723-734.

[16]

Q. Wu, J. M. Moore, N. A. Rabaia, et al., “Loss of Maternal CTCF Is Associated With Peri-Implantation Lethality of Ctcf Null Embryos,” PLoS One 7 (2012): e34915.

[17]

I. Hori, R. Kawamura, K. Nakabayashi, et al., “CTCF Deletion Syndrome: Clinical Features and Epigenetic Delineation,” Journal of Medical Genetics 54 (2017): 836-842.

[18]

A. D. Marshall, C. G. Bailey, K. Champ, et al., “CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic,” Oncogene 36 (2017): 4100-4110.

[19]

E. D. H. Konrad, N. Nardini, A. Caliebe, et al., “CTCF Variants in 39 Individuals With a Variable Neurodevelopmental Disorder Broaden the Mutational and Clinical Spectrum,” Genetics in Medicine 21 (2019): 2723-2733.

[20]

F. Chen, H. Yuan, W. Wu, et al., “Three Additional de Novo CTCF Mutations in Chinese Patients Help to Define an Emerging Neurodevelopmental Disorder,” Am J Med Genet C 181 (2019): 218-225.

[21]

A. Gregor, M. Oti, E. N. Kouwenhoven, et al., “De Novo Mutations in the Genome Organizer CTCF Cause Intellectual Disability,” American Journal of Human Genetics 93 (2013): 124-131.

[22]

T. Wang, K. Hoekzema, D. Vecchio, et al., “Large-Scale Targeted Sequencing Identifies Risk Genes for Neurodevelopmental Disorders,” Nature Communications 11 (2020): 4932.

[23]

F. Bastaki, P. Nair, M. Mohamed, et al., “Identification of a Novel CTCF Mutation Responsible for Syndromic Intellectual Disability-a Case Report,” BMC Medical Genetics 18 (2017): 68.

[24]

J. Homsy, S. Zaidi, Y. Shen, et al., “De Novo Mutations in Congenital Heart Disease With Neurodevelopmental and Other Congenital Anomalies,” Science 350 (2015): 1262-1266.

[25]

G. S. Barsh, M. Gomez-Velazquez, C. Badia-Careaga, et al., “CTCF Counter-Regulates Cardiomyocyte Development and Maturation Programs in the Embryonic Heart,” PLoS Genetics 13 (2017): e1006985.

[26]

M. Rosa-Garrido, D. J. Chapski, A. D. Schmitt, et al., “High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure,” Circulation 136 (2017): 1613-1625.

[27]

D. P. Lee, W. L. W. Tan, C. G. Anene-Nzelu, et al., “Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response,” Circulation 139 (2019): 1937-1956.

[28]

J. Zhang, G. Hu, Y. Lu, et al., “CTCF Mutation at R567 Causes Developmental Disorders via 3D Genome Rearrangement and Abnormal Neurodevelopment,” Nature Communications 15 (2024): 5524.

[29]

A. Dobin, C. A. Davis, F. Schlesinger, et al., “STAR: ultrafast universal RNA-seq aligner,” Bioinformatics 29 (2013): 15-21.

[30]

B. Li and C. N. Dewey, “RSEM: Accurate Transcript Quantification From RNA-Seq Data With or Without a Reference Genome,” BMC Bioinformatics 12 (2011): 323.

[31]

M. I. Love, W. Huber, and S. Anders, “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With DESeq2,” Genome Biology 15 (2014): 550.

[32]

G. Yu, L.-G. Wang, Y. Han, and Q. Y. He, “ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters,” OMICS: A Journal of Integrative Biology 16 (2012): 284-287.

[33]

G. Yu, D. K. Smith, H. Zhu, Y. Guan, and T. T. Y. Lam, “Ggtree: An R Package for Visualization and Annotation of Phylogenetic Trees With Their Covariates and Other Associated Data,” Methods in Ecology and Evolution 8 (2016): 28-36.

[34]

Z. Shao, Y. Zhang, G.-C. Yuan, S. H. Orkin, and D. J. Waxman, “MAnorm: A Robust Model for Quantitative Comparison of ChIP-Seq Data Sets,” Genome Biology 13 (2012): R16.

[35]

F. Ramírez, D. P. Ryan, B. Grüning, et al., “DeepTools2: A Next Generation Web Server for Deep-Sequencing Data Analysis,” Nucleic Acids Research 44 (2016): W160-W165.

[36]

G. Yu, L.-G. Wang, and Q.-Y. He, “ChIPseeker: An R/Bioconductor Package for ChIP Peak Annotation, Comparison and Visualization,” Bioinformatics 31 (2015): 2382-2383.

[37]

T. L. Bailey, M. Boden, F. A. Buske, et al., “MEME SUITE: Tools for Motif Discovery and Searching,” Nucleic Acids Research 37 (2009): W202-W208.

[38]

Z. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors, “Circlize Implements and Enhances Circular Visualization in R,” Bioinformatics 30 (2014): 2811-2812.

[39]

N. E. Kramer, E. S. Davis, C. D. Wenger, et al., “Plotgardener: Cultivating Precise Multi-Panel Figures in R,” Bioinformatics 38 (2022): 2042-2045.

[40]

Z. Jia, J. Li, X. Ge, Y. Wu, Y. Guo, and Q. Wu, “Tandem CTCF Sites Function as Insulators to Balance Spatial Chromatin Contacts and Topological Enhancer-Promoter Selection,” Genome Biology 21 (2020): 75.

[41]

A. Kechin, U. Boyarskikh, A. Kel, and M. Filipenko, “cutPrimers: A New Tool for Accurate Cutting of Primers From Reads of Targeted Next Generation Sequencing,” Journal of Computational Biology 24 (2017): 1138-1143.

[42]

S. Thongjuea, R. Stadhouders, F. G. Grosveld, E. Soler, and B. Lenhard, “r3Cseq: An R/Bioconductor Package for the Discovery of Long-Range Genomic Interactions From Chromosome Conformation Capture and Next-Generation Sequencing Data,” Nucleic Acids Research 41 (2013): e132.

[43]

T.-H. S. Hsieh, C. Cattoglio, E. Slobodyanyuk, A. S. Hansen, X. Darzacq, and R. Tjian, “Enhancer-Promoter Interactions and Transcription Are Largely Maintained Upon Acute Loss of CTCF, Cohesin, WAPL or YY1,” Nature Genetics 54 (2022): 1919-1932.

[44]

L. Handoko, H. Xu, G. Li, et al., “CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells,” Nature Genetics 43 (2011): 630-638.

[45]

B. He, C. Chen, L. Teng, et al., “Global View of Enhancer-Promoter Interactome in Human Cells,” Proc Natl Acad sci USA 111 (2014): E2191-E2199.

[46]

E. Arbustini, V. Favalli, N. Narula, A. Serio, and M. Grasso, “Left ventricular noncompaction,” Journal of the American College of Cardiology 68 (2016): 949-966.

[47]

E. Arbustini, F. Weidemann, and J. L. Hall, “Left ventricular noncompaction,” Journal of the American College of Cardiology 64 (2014): 1840-1850.

[48]

E. Oechslin and R. Jenni, “Left Ventricular Noncompaction,” Journal of the American College of Cardiology 71 (2018): 723-726.

[49]

S. Schoenfelder and P. Fraser, “Long-Range Enhancer-Promoter Contacts in Gene Expression Control,” Nature Reviews. Genetics 20 (2019): 437-455.

[50]

L. A. Samsa, B. Yang, and J. Liu, “Embryonic Cardiac Chamber Maturation: Trabeculation, Conduction, and Cardiomyocyte Proliferation,” Am J Med Genet C 163 (2013): 157-168.

[51]

H. Lin, R. C. Lee, M. H. Lee, et al., “Cerebral ischemia and neuroregeneration,” Neural Regeneration Research 13 (2018): 373-385.

[52]

J. Ritterhoff and R. Tian, “Metabolism in Cardiomyopathy: Every Substrate Matters,” Cardiovascular Research 113 (2017): 411-421.

[53]

S. Ma, S. Sun, J. Li, et al., “Single-Cell Transcriptomic Atlas of Primate Cardiopulmonary Aging,” Cell Research 31 (2020): 415-432.

[54]

J. A. Towbin, A. Lorts, and J. L. Jefferies, “Left Ventricular Non-compaction Cardiomyopathy,” Lancet 386 (2015): 813-825.

[55]

I. Vercellino and L. A. Sazanov, “The Assembly, Regulation and Function of the Mitochondrial Respiratory Chain,” Nature Reviews. Molecular Cell Biology 23 (2021): 141-161.

[56]

S. C. Kolwicz, S. Purohit, and R. Tian, “Cardiac Metabolism and Its Interactions With Contraction, Growth, and Survival of Cardiomyocytes,” Circulation Research 113 (2013): 603-616.

[57]

Y. Feng, W. Huang, C. Paul, et al., “Mitochondrial Nucleoid in Cardiac Homeostasis: Bidirectional Signaling of Mitochondria and Nucleus in Cardiac Diseases,” Basic Research in Cardiology 116 (2021): 49.

[58]

D. Nolfi-Donegan, A. Braganza, and S. Shiva, “Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement,” Redox Biology 37 (2020): 101674.

[59]

N. Soshnikova, T. Montavon, M. Leleu, N. Galjart, and D. Duboule, “Functional Analysis of CTCF During Mammalian Limb Development,” Developmental Cell 19 (2010): 819-830.

[60]

R. C. Ahrens-Nicklas, C. T. Pappas, G. P. Farman, et al., “Disruption of Cardiac Thin Filament Assembly Arising From a Mutation in LMOD2: A Novel Mechanism of Neonatal Dilated Cardiomyopathy,” Science Advances 5 (2019): eaax2066.

[61]

J. Zuin, J. R. Dixon, M. I. J. A. van der Reijden, et al., “Cohesin and CTCF Differentially Affect Chromatin Architecture and Gene Expression in Human Cells,” Proc Natl Acad sci USA 111 (2013): 996-1001.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/