Ubiquitin-Proteasome System in Periodontitis: Mechanisms and Clinical Implications

Yilin Ma , Ruiwei Jia , Shuhong Chen , Jun Ma , Lei Yin , Xingbei Pan , Yunuo He , Tong Wu , Zheyu Zhao , Lulu Ma , Shengzhuang Wu , Huining Wang , Guang Liang , Shengbin Huang , Xiaoyu Sun

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13781

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13781 DOI: 10.1111/cpr.13781
REVIEW

Ubiquitin-Proteasome System in Periodontitis: Mechanisms and Clinical Implications

Author information +
History +
PDF

Abstract

The progression of periodontitis, a bacteria-driven inflammatory and bone-destructive disease, involves myriad cellular and molecular mechanisms. Protein regulation significantly influences the pathogenesis and management of periodontitis. However, research regarding its regulatory role in periodontitis remains relatively limited. The ubiquitin-proteasome system (UPS), which mainly involves ubiquitination by E3 ubiquitin ligases (E3s) and deubiquitination by deubiquitinating enzymes (DUBs), is the primary intracellular and non-lysosomal mechanism of protein degradation. Recent studies have provided compelling evidence to support the involvement of UPS in periodontitis progression. Increasing evidence indicated that E3s, such as CUL3, Nedd4-2, Synoviolin, FBXL19, PDLIM2, TRIMs and TRAFs, modulate inflammatory responses and bone resorption in periodontitis through multiple classical signalling pathways, including NLRP3, GSDMD, NF-κB, Wnt/β-catenin and Nrf2. Meanwhile, DUBs, including OTUD1, A20, CYLD, UCH-L1 and USPs, also broadly modulate periodontitis progression by regulating signalling pathways such as NF-κB, Wnt/β-catenin, NLRP3, and BMP2. Therefore, the modulation of E3s and DUBs has proven to be an effective therapy against periodontitis. This review provides a comprehensive overview of the regulatory role of ubiquitinating and deubiquitinating enzymes in periodontitis progression and the underlying mechanisms. Finally, we summarise several chemical and genetic methods that regulate UPS enzymes and pave the way for the development of targeted therapies for periodontitis.

Keywords

bone metabolism / deubiquitinating enzymes / E3 ubiquitin ligases / inflammation / periodontitis / ubiquitin-proteasome system

Cite this article

Download citation ▾
Yilin Ma, Ruiwei Jia, Shuhong Chen, Jun Ma, Lei Yin, Xingbei Pan, Yunuo He, Tong Wu, Zheyu Zhao, Lulu Ma, Shengzhuang Wu, Huining Wang, Guang Liang, Shengbin Huang, Xiaoyu Sun. Ubiquitin-Proteasome System in Periodontitis: Mechanisms and Clinical Implications. Cell Proliferation, 2025, 58(3): e13781 DOI:10.1111/cpr.13781

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zhang, X. Wang, J. Wu, et al., “The Global Burden of Periodontal Diseases in 204 Countries and Territories From 1990 to 2019,” Oral Diseases 30, no. 2 (2024): 754-768.

[2]

N. J. Kassebaum, A. G. C. Smith, E. Bernabé, et al., “Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990-2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors,” Journal of Dental Research 96, no. 4 (2017): 380-387.

[3]

R. J. Genco and M. Sanz, “Clinical and Public Health Implications of Periodontal and Systemic Diseases: An Overview,” Periodontology 2000 83, no. 1 (2020): 7-13.

[4]

S. S. B. Qasim, D. Al-Otaibi, R. Al-Jasser, S. S. Gul, and M. S. Zafar, “An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases,” International Journal of Molecular Sciences 21, no. 11 (2020): 3829.

[5]

X. W. Xu, X. Liu, C. Shi, and H. C. Sun, “Roles of Immune Cells and Mechanisms of Immune Responses in Periodontitis,” Chinese Journal of Dental Research 24, no. 4 (2021): 219-230.

[6]

P. Zhao, A. Xu, and W. K. Leung, “Obesity, Bone Loss, and Periodontitis: The Interlink,” Biomolecules 12, no. 7 (2022): 865.

[7]

Y. C. Wang, S. E. Peterson, and J. F. Loring, “Protein Post-Translational Modifications and Regulation of Pluripotency in Human Stem Cells,” Cell Research 24, no. 2 (2014): 143-160.

[8]

J. M. Lee, H. M. Hammarén, M. M. Savitski, and S. H. Baek, “Control of Protein Stability by Post-Translational Modifications,” Nature Communications 14, no. 1 (2023): 201.

[9]

F. A. Fischer, K. W. Chen, and J. S. Bezbradica, “Posttranslational and Therapeutic Control of Gasdermin-Mediated Pyroptosis and Inflammation,” Frontiers in Immunology 12 (2021): 661162.

[10]

C. Pohl and I. Dikic, “Cellular Quality Control by the Ubiquitin-Proteasome System and Autophagy,” Science 366, no. 6467 (2019): 818-822.

[11]

C. Sampson, Q. Wang, W. Otkur, et al., “The Roles of E3 Ubiquitin Ligases in Cancer Progression and Targeted Therapy,” Clinical and Translational Medicine 13, no. 3 (2023): e1204.

[12]

T. Sun, Z. Liu, and Q. Yang, “The Role of Ubiquitination and Deubiquitination in Cancer Metabolism,” Molecular Cancer 19, no. 1 (2020): 146.

[13]

W. Luo, G. Zhang, Z. Wang, Y. Wu, and Y. Xiong, “Ubiquitin-Specific Proteases: Vital Regulatory Molecules in Bone and Bone-Related Diseases,” International Immunopharmacology 118 (2023): 110075.

[14]

V. Machado, R. Carvalho, J. J. Mendes, and J. Botelho, “The Ubiquitin Proteasome System in Periodontal Disease: A Comprehensive Review,” Frontiers in Dental Medicine 1 (2020): 613080.

[15]

P. E. Cockram, M. Kist, S. Prakash, S. H. Chen, I. E. Wertz, and D. Vucic, “Ubiquitination in the Regulation of Inflammatory Cell Death and Cancer,” Cell Death and Differentiation 28, no. 2 (2021): 591-605.

[16]

S. Tsuchida and T. Nakayama, “Ubiquitination and Deubiquitination in Oral Disease,” International Journal of Molecular Sciences 22, no. 11 (2021): 5488.

[17]

R. Chen, H. Zhang, L. Li, et al., “Roles of Ubiquitin-Specific Proteases in Inflammatory Diseases,” Frontiers in Immunology 15 (2024): 1258740.

[18]

X. Meng, Y. Zhu, H. Tan, et al., “The Cytoskeleton Dynamics-Dependent LINC Complex in Periodontal Ligament Stem Cells Transmits Mechanical Stress to the Nuclear Envelope and Promotes YAP Nuclear Translocation,” Stem Cell Research & Therapy 15, no. 1 (2024): 284.

[19]

Y. Li, Q. Zhan, M. Bao, J. Yi, and Y. Li, “Biomechanical and Biological Responses of Periodontium in Orthodontic Tooth Movement: Up-Date in a New Decade,” International Journal of Oral Science 13, no. 1 (2021): 20.

[20]

A. Wielento, K. B. Lagosz-Cwik, J. Potempa, and A. M. Grabiec, “The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis,” Journal of Dental Research 102, no. 5 (2023): 489-496.

[21]

X. Huang, M. Xie, Y. Xie, et al., “The Roles of Osteocytes in Alveolar Bone Destruction in Periodontitis,” Journal of Translational Medicine 18, no. 1 (2020): 479.

[22]

B. Yang, X. Pang, Z. Li, Z. Chen, and Y. Wang, “Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives,” Frontiers in Immunology 12 (2021): 781378.

[23]

Y. Li, S. Li, and H. Wu, “Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress,” Cells 11, no. 5 (2022): 851.

[24]

I. Dikic and B. A. Schulman, “An Expanded Lexicon for the Ubiquitin Code,” Nature Reviews Molecular Cell Biology 24, no. 4 (2023): 273-287.

[25]

J. Park, J. Cho, and E. J. Song, “Ubiquitin-Proteasome System (UPS) as a Target for Anticancer Treatment,” Archives of Pharmacal Research 43, no. 11 (2020): 1144-1161.

[26]

L. Song and Z. Q. Luo, “Post-Translational Regulation of Ubiquitin Signaling,” Journal of Cell Biology 218, no. 6 (2019): 1776-1786.

[27]

S. Toma-Fukai and T. Shimizu, “Structural Diversity of Ubiquitin E3 Ligase,” Molecules 26, no. 21 (2021): 6682.

[28]

Y. Hu, Z. Zhang, Q. Mao, et al., “Dynamic Molecular Architecture and Substrate Recruitment of cullin3-RING E3 Ligase CRL3(KBTBD2),” Nature Structural & Molecular Biology 31, no. 2 (2024): 336-350.

[29]

L. Wang, H. Li, A. Huang, et al., “Mutual Regulation Between TRIM21 and TRIM8 via K48-Linked Ubiquitination,” Oncogene 42, no. 50 (2023): 3708-3718.

[30]

E. Lafont, P. Draber, E. Rieser, et al., “TBK1 and IKKepsilon Prevent TNF-Induced Cell Death by RIPK1 Phosphorylation,” Nature Cell Biology 20, no. 12 (2018): 1389-1399.

[31]

K. L. Lim and G. G. Lim, “K63-Linked Ubiquitination and Neurodegeneration,” Neurobiology of Disease 43, no. 1 (2011): 9-16.

[32]

G. Dewson, P. J. A. Eichhorn, and D. Komander, “Deubiquitinases in cancer,” Nature Reviews Cancer 23, no. 12 (2023): 842-862.

[33]

X. Pan, S. Wu, W. Wei, Z. Chen, Y. Wu, and K. Gong, “Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease,” Biomolecules 12, no. 7 (2022): 910.

[34]

B. Woo and K. H. Baek, “Regulatory Interplay Between Deubiquitinating Enzymes and Cytokines,” Cytokine & Growth Factor Reviews 48 (2019): 40-51.

[35]

N. A. Snyder and G. M. Silva, “Deubiquitinating Enzymes (DUBs): Regulation, Homeostasis, and Oxidative Stress Response,” Journal of Biological Chemistry 297, no. 3 (2021): 101077.

[36]

D. Schlüter, E. Schulze-Niemand, M. Stein, and M. Naumann, “Ovarian Tumor Domain Proteases in Pathogen Infection,” Trends in Microbiology 30, no. 1 (2022): 22-33.

[37]

S. Chen, Y. Liu, and H. Zhou, “Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors,” International Journal of Molecular Sciences 22, no. 9 (2021): 4546.

[38]

C. Meyer-Schwesinger, “The Ubiquitin-Proteasome System in Kidney Physiology and Disease,” Nature Reviews Nephrology 15, no. 7 (2019): 393-411.

[39]

R. H. Chen, “Cullin 3 and Its Role in Tumorigenesis,” Advances in Experimental Medicine and Biology 1217 (2020): 187-210.

[40]

G. D. Marconi, L. Fonticoli, S. Guarnieri, et al., “Ascorbic Acid: A New Player of Epigenetic Regulation in LPS-Gingivalis Treated Human Periodontal Ligament Stem Cells,” Oxidative Medicine and Cellular Longevity 2021 (2021): 6679708.

[41]

W. Chen, J. Su, S. Cai, and C. Shi, “Cullin3 Aggravates the Inflammatory Response of Periodontal Ligament Stem Cells via Regulation of SHH Signaling and Nrf2,” Bioengineered 12, no. 1 (2021): 3089-3100.

[42]

H. Zhou, J. Lu, K. Chinnaswamy, et al., “Selective Inhibition of Cullin 3 Neddylation Through Covalent Targeting DCN1 Protects Mice From Acetaminophen-Induced Liver Toxicity,” Nature Communications 12, no. 1 (2021): 2621.

[43]

Y. Wei, J. Song, J. Zhang, et al., “Exploring TRIM proteins' Role in Antiviral Defense Against Influenza A Virus and Respiratory Coronaviruses,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1420854.

[44]

X. Ren, J. Yu, L. Guo, and H. Ma, “TRIM16 Protects From OGD/R-Induced Oxidative Stress in Cultured Hippocampal Neurons by Enhancing Nrf2/ARE Antioxidant Signaling via Downregulation of Keap1,” Experimental Cell Research 391, no. 1 (2020): 111988.

[45]

K. Aral, E. Berdeli, P. R. Cooper, et al., “Differential Expression of Inflammasome Regulatory Transcripts in Periodontal Disease,” Journal of Periodontology 91, no. 5 (2020): 606-616.

[46]

Y. Zhao, Q. Zhai, H. Liu, X. Xi, S. Chen, and D. Liu, “TRIM16 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating CHIP-Mediated Degradation of RUNX2,” Frontiers in Cell and Developmental Biology 8 (2020): 625105.

[47]

W. Jiang, Y. Wang, Z. Cao, et al., “The Role of Mitochondrial Dysfunction in Periodontitis: From Mechanisms to Therapeutic Strategy,” Journal of Periodontal Research 58, no. 5 (2023): 853-863.

[48]

N. Ruangsawasdi, N. Boonnak, C. Pruksaniyom, and P. Rodanant, “Xanthones Isolated From Cratoxylum Cochinchinensis Reduced Oxidative Stress in Periodontal Ligament Stem Cells,” International Journal of Molecular Sciences 24, no. 19 (2023): 14675.

[49]

Y. Zhao, H. Liu, X. Xi, S. Chen, and D. Liu, “TRIM16 Protects Human Periodontal Ligament Stem Cells From Oxidative Stress-Induced Damage via Activation of PICOT,” Experimental Cell Research 397, no. 1 (2020): 112336.

[50]

N. H. Deng, Z. Tian, Y. J. Zou, and S. B. Quan, “E3 Ubiquitin Ligase TRIM31: A Potential Therapeutic Target,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 176 (2024): 116846.

[51]

Q. Yu, H. Shi, Z. Ding, Z. Wang, H. Yao, and R. Lin, “The E3 Ubiquitin Ligase TRIM31 Attenuates NLRP3 Inflammasome Activation in Helicobacter pylori-Associated Gastritis by Regulating ROS and Autophagy,” Cell Communication and Signaling: CCS 21, no. 1 (2023): 1.

[52]

X. Yi, Y. Song, J. Xu, et al., “NLRP10 Promotes AGEs-Induced NLRP1 and NLRP3 Inflammasome Activation via ROS/MAPK/NF-κB Signaling in Human Periodontal Ligament Cells,” Odontology 112, no. 1 (2024): 100-111.

[53]

L. Gao, Y. Gao, K. Han, et al., “FBXO11 Amplifies Type I Interferon Signaling to Exert Antiviral Effects by Facilitating the Assemble of TRAF3-TBK1-IRF3 Complex,” Journal of Medical Virology 95, no. 3 (2023): e28655.

[54]

H. Xu, W. Wang, X. Liu, et al., “Targeting Strategies for Bone Diseases: Signaling Pathways and Clinical Studies,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 202.

[55]

H. Huang, J. Lu, I. Aukhil, et al., “FBXO11 regulates bone development,” Bone 170 (2023): 116709.

[56]

J. Shen, X. Lin, F. Dai, et al., “Ubiquitin-Specific Peptidases: Players in Bone Metabolism,” Cell Proliferation 56, no. 8 (2023): e13444.

[57]

Y. Yang, Z. Liu, J. Wu, et al., “Nrf2 Mitigates RANKL and M-CSF Induced Osteoclast Differentiation via ROS-Dependent Mechanisms,” Antioxidants 12, no. 12 (2023): 2094.

[58]

J. Cui, Y. Shibata, T. Zhu, J. Zhou, and J. Zhang, “Osteocytes in Bone Aging: Advances, Challenges, and Future Perspectives,” Ageing Research Reviews 77 (2022): 101608.

[59]

T. Yoshimoto, M. Kittaka, A. A. P. Doan, et al., “Osteocytes Directly Regulate Osteolysis via MYD88 Signaling in Bacterial Bone Infection,” Nature Communications 13, no. 1 (2022): 6648.

[60]

T. Tanaka, Y. Yamamoto, R. Muromoto, et al., “PDLIM2 Inhibits T Helper 17 Cell Development and Granulomatous Inflammation Through Degradation of STAT3,” Science Signaling 4, no. 202 (2011): ra85.

[61]

M. Xun, J. Wang, Q. Xie, et al., “FBXL19 Promotes Malignant Behaviours by Activating MAPK Signalling and Negatively Correlates With Prognosis in Hepatocellular Carcinoma,” Heliyon 9, no. 11 (2023): e21771.

[62]

B. S. Herrera, A. S. Bastos, L. S. Coimbra, et al., “Peripheral Blood Mononuclear Phagocytes From Patients With Chronic Periodontitis Are Primed for Osteoclast Formation,” Journal of Periodontology 85, no. 4 (2014): e72-e81.

[63]

M. Mohammed, B. Ogunlade, M. Elgazzaz, et al., “Nedd4-2 Up-Regulation Is Associated With ACE2 Ubiquitination in Hypertension,” Cardiovascular Research 119, no. 11 (2023): 2130-2141.

[64]

L. , L. Yakoumatos, J. Ren, et al., “JAK3 Restrains Inflammatory Responses and Protects Against Periodontal Disease Through Wnt3a Signaling,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34, no. 7 (2020): 9120-9140.

[65]

D. Siegmund, J. Wagner, and H. Wajant, “TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer,” Cancers 14, no. 16 (2022): 4055.

[66]

E. L. Hornick and G. A. Bishop, “TRAF3: Guardian of T Lymphocyte Functions,” Frontiers in Immunology 14 (2023): 1129251.

[67]

X. Han, J. Ren, H. Lohner, L. Yakoumatos, R. Liang, and H. Wang, “SGK1 Negatively Regulates Inflammatory Immune Responses and Protects Against Alveolar Bone Loss Through Modulation of TRAF3 Activity,” Journal of Biological Chemistry 298, no. 6 (2022): 102036.

[68]

Y. Shi, Y. Yang, W. Xu, et al., “E3 Ubiquitin Ligase SYVN1 Is a Key Positive Regulator for GSDMD-Mediated Pyroptosis,” Cell Death & Disease 13, no. 2 (2022): 106.

[69]

Y. Pang, L. Liu, S. Wu, J. Wang, and L. Liu, “Synoviolin Alleviates GSDMD-Mediated Periodontitis by Suppressing Its Stability,” Immunity, Inflammation and Disease 11, no. 7 (2023): e880.

[70]

Z. Xu, N. Zhang, and L. Shi, “Potential Roles of UCH Family Deubiquitinases in Tumorigenesis and Chemical Inhibitors Developed Against Them,” American Journal of Cancer Research 14, no. 6 (2024): 2666-2694.

[71]

M. Wang, “Dysfunctional UCH-L1 Inhibits Proteostasis,” Nature Reviews Nephrology 19, no. 7 (2023): 424.

[72]

L. Lin, S. Li, S. Hu, et al., “UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis,” Journal of Dental Research 102, no. 1 (2023): 61-71.

[73]

H. Kitamura, “Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders,” International Journal of Molecular Sciences 24, no. 4 (2023): 3219.

[74]

Q. Chen, J. Su, and X. Chen, “Role of Ubiquitin-Specific Protease 5 in the Inflammatory Response of Chronic Periodontitis,” Oral Diseases 29, no. 3 (2023): 1234-1241.

[75]

X. Liu, B. Wang, M. Chang, et al., “USP12 Regulates ER Stress-Associated Osteogenesis in Human Periodontal Ligament Cells Under Tension Stress,” Cellular Signalling 114 (2024): 111015.

[76]

F. Zheng, F. Wang, T. Wu, et al., “Ubiquitin C-Terminal Hydrolase L1 Activation in Periodontal Ligament Cells Mediates Orthodontic Tooth Movement via the MAPK Signaling Pathway,” Connective Tissue Research 1-12 (2024): 421-432.

[77]

J. Du, L. Fu, Y. Sui, and L. Zhang, “The Function and Regulation of OTU Deubiquitinases,” Frontiers of Medicine 14, no. 5 (2020): 542-563.

[78]

P. Hertens and G. van Loo, “A20: A Jack of all Trades,” Trends in Cell Biology 34, no. 5 (2024): 360-362.

[79]

E. C. Mooney and S. E. Sahingur, “The Ubiquitin System and A20: Implications in Health and Disease,” Journal of Dental Research 100, no. 1 (2021): 10-20.

[80]

H. Tang, Y. Ye, L. Li, et al., “A20 Alleviated Caspase-1-Mediated Pyroptosis and Inflammation Stimulated by Porphyromonas gingivalis Lipopolysaccharide and Nicotine Through Autophagy Enhancement,” Human Cell 35, no. 3 (2022): 803-816.

[81]

K. Yan, C. Wu, Y. Ye, et al., “A20 Inhibits Osteoclastogenesis via TRAF6-Dependent Autophagy in Human Periodontal Ligament Cells Under Hypoxia,” Cell Proliferation 53, no. 3 (2020): e12778.

[82]

D. W. Williams, T. Greenwell-Wild, L. Brenchley, et al., “Human Oral Mucosa Cell Atlas Reveals a Stromal-Neutrophil Axis Regulating Tissue Immunity,” Cell 184, no. 15 (2021): 4090-4104.e4015.

[83]

A. J. Caetano, V. Yianni, A. Volponi, V. Booth, E. M. D'Agostino, and P. Sharpe, “Defining Human Mesenchymal and Epithelial Heterogeneity in Response to Oral Inflammatory Disease,” eLife 10 (2021): e62810.

[84]

S. Yamanaka, Y. Sato, D. Oikawa, et al., “Subquinocin, a Small Molecule Inhibitor of CYLD and USP-Family Deubiquitinating Enzymes, Promotes NF-κB Signaling,” Biochemical and Biophysical Research Communications 524, no. 1 (2020): 1-7.

[85]

S. K. Hsu, C. K. Chou, I. L. Lin, W. T. Chang, I. Y. Kuo, and C. C. Chiu, “Deubiquitinating Enzymes: Potential Regulators of the Tumor Microenvironment and Implications for Immune Evasion,” Cell Communication and Signaling: CCS 22, no. 1 (2024): 259.

[86]

Y. W. Fu, L. Li, X. Q. Wang, et al., “The Inhibitory Effect of the Deubiquitinase Cylindromatosis (CYLD) on Inflammatory Responses in Human Gingival Fibroblasts,” Oral Diseases 27, no. 6 (2021): 1487-1497.

[87]

S. C. Sun, “CYLD: A Tumor Suppressor Deubiquitinase Regulating NF-kappaB Activation and Diverse Biological Processes,” Cell Death and Differentiation 17, no. 1 (2010): 25-34.

[88]

B. Song, Y. Zeng, Y. Cao, et al., “Emerging Role of METTL3 in Inflammatory Diseases: Mechanisms and Therapeutic Applications,” Frontiers in Immunology 14 (2023): 1221609.

[89]

X. Zhou, X. Yang, S. Huang, et al., “Inhibition of METTL3 Alleviates NLRP3 Inflammasome Activation via Increasing Ubiquitination of NEK7,” Advanced Science 11, no. 26 (2024): e2308786.

[90]

J. Liu, J. Ruan, M. D. Weir, et al., “Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells,” Cells 8, no. 6 (2019): 537.

[91]

B. Yu and C. Y. Wang, “Osteoporosis and Periodontal Diseases - An Update on Their Association and Mechanistic Links,” Periodontology 2000 89, no. 1 (2022): 99-113.

[92]

M. Zhou and D. T. Graves, “Impact of the Host Response and Osteoblast Lineage Cells on Periodontal Disease,” Frontiers in Immunology 13 (2022): 998244.

[93]

H. Hariri and R. St-Arnaud, “Expression and Role of Ubiquitin-Specific Peptidases in Osteoblasts,” International Journal of Molecular Sciences 22, no. 14 (2021): 7746.

[94]

M. J. Kim, M. Piao, Y. Li, S. H. Lee, and K. Y. Lee, “Deubiquitinase USP17 Regulates Osteoblast Differentiation by Increasing Osterix Protein Stability,” International Journal of Molecular Sciences 24, no. 20 (2023): 15257.

[95]

X. T. Li, Z. L. Li, P. L. Li, et al., “TNFAIP3 Derived From Skeletal Stem Cells Alleviated Rat Osteoarthritis by Inhibiting the Necroptosis of Subchondral Osteoblasts,” Stem Cells 42, no. 4 (2024): 360-373.

[96]

Q. Zhu, Y. Fu, C. P. Cui, et al., “OTUB1 Promotes Osteoblastic Bone Formation Through Stabilizing FGFR2,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 142.

[97]

F. Li, X. Liu, M. Li, et al., “Inhibition of PKM2 Suppresses Osteoclastogenesis and Alleviates Bone Loss in Mouse Periodontitis,” International Immunopharmacology 129 (2024): 111658.

[98]

L. Hou, Y. Ye, H. Gou, et al., “A20 Inhibits Periodontal Bone Resorption and NLRP3-Mediated M1 Macrophage Polarization,” Experimental Cell Research 418, no. 1 (2022): 113264.

[99]

Y. Cao, X. Zhang, M. Hu, et al., “CYLD Inhibits Osteoclastogenesis to Ameliorate Alveolar Bone Loss in Mice With Periodontitis,” Journal of Cellular Physiology 238, no. 5 (2023): 1036-1045.

[100]

B. Zhang, Y. Yang, J. Yi, Z. Zhao, and R. Ye, “Hyperglycemia Modulates M1/M2 Macrophage Polarization via Reactive Oxygen Species Overproduction in Ligature-Induced Periodontitis,” Journal of Periodontal Research 56, no. 5 (2021): 991-1005.

[101]

J. Song, Y. Zhang, Y. Bai, et al., “The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization and Ameliorates Immunopathology of Periodontitis,” Advanced Science 10, no. 30 (2023): e2303207.

[102]

S. Swaidani, C. Liu, J. Zhao, K. Bulek, and X. Li, “TRAF Regulation of IL-17 Cytokine Signaling,” Frontiers in Immunology 10 (2019): 1293.

[103]

N. Huang, H. Dong, Y. Luo, and B. Shao, “Th17 Cells in Periodontitis and Its Regulation by A20,” Frontiers in Immunology 12 (2021): 742925.

[104]

K. Hirota, H. Yoshitomi, M. Hashimoto, et al., “Preferential Recruitment of CCR6-Expressing Th17 Cells to Inflamed Joints via CCL20 in Rheumatoid Arthritis and Its Animal Model,” Journal of Experimental Medicine 204, no. 12 (2007): 2803-2812.

[105]

J. Kitagaki, S. Miyauchi, C. J. Xie, et al., “Effects of the Proteasome Inhibitor, Bortezomib, on Cytodifferentiation and Mineralization of Periodontal Ligament Cells,” Journal of Periodontal Research 50, no. 2 (2015): 248-255.

[106]

X. Wu, H. Fukushima, B. J. North, et al., “SCFβ-TRCP Regulates Osteoclastogenesis via Promoting CYLD Ubiquitination,” Oncotarget 5, no. 12 (2014): 4211-4221.

[107]

D. J. Kim, Y. W. Yi, and Y. S. Seong, “Beta-Transducin Repeats-Containing Proteins as an Anticancer Target,” Cancers 15, no. 17 (2023): 4248.

[108]

L. Jiang, J. Song, X. Hu, et al., “The Proteasome Inhibitor Bortezomib Inhibits Inflammatory Response of Periodontal Ligament Cells and Ameliorates Experimental Periodontitis in Rats,” Journal of Periodontology 88, no. 5 (2017): 473-483.

[109]

Z. Zhang, X. Fu, L. Xu, et al., “Nanosized Alumina Particle and Proteasome Inhibitor Bortezomib Prevented Inflammation and Osteolysis Induced by Titanium Particle via Autophagy and NF-κB Signaling,” Scientific Reports 10, no. 1 (2020): 5562.

[110]

Y. G. Kim, J. H. Kang, H. J. Kim, et al., “Bortezomib Inhibits Osteoclastogenesis and porphyromonas gingivalis Lipopolysaccharide-Induced Alveolar Bone Resorption,” Journal of Dental Research 94, no. 9 (2015): 1243-1250.

[111]

P. G. Richardson, B. Barlogie, J. Berenson, et al., “A Phase 2 Study of Bortezomib in Relapsed, Refractory Myeloma,” New England Journal of Medicine 348, no. 26 (2003): 2609-2617.

[112]

M. L. Hyer, M. A. Milhollen, J. Ciavarri, et al., “A Small-Molecule Inhibitor of the Ubiquitin Activating Enzyme for Cancer Treatment,” Nature Medicine 24, no. 2 (2018): 186-193.

[113]

L. H. Aleksijević, M. Aleksijević, I. Škrlec, M. Šram, M. Šram, and J. Talapko, “Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases,” Pathogens 11, no. 10 (2022): 1173.

[114]

S. Tsuchida, M. Satoh, M. Takiwaki, and F. Nomura, “Ubiquitination in Periodontal Disease: A Review,” International Journal of Molecular Sciences 18, no. 7 (2017): 1476.

[115]

H. Liu, J. Du, S. Chao, et al., “Fusobacterium nucleatum Promotes Colorectal Cancer Cell to Acquire Stem Cell-Like Features by Manipulating Lipid Droplet-Mediated Numb Degradation,” Advanced Science 9, no. 12 (2022): e2105222.

[116]

X. M. Wang, C. Yang, Y. Zhao, et al., “The Deubiquitinase USP25 Supports Colonic Inflammation and Bacterial Infection and Promotes Colorectal Cancer,” Nature Cancer 1, no. 8 (2020): 811-825.

[117]

D. Wang, P. W. L. Tai, and G. Gao, “Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery,” Nature Reviews Drug Discovery 18, no. 5 (2019): 358-378.

[118]

Z. Hu, J. Yang, S. Zhang, et al., “AAV Mediated Carboxyl Terminus of Hsp70 Interacting Protein Overexpression Mitigates the Cognitive and Pathological Phenotypes of APP/PS1 Mice,” Neural Regeneration Research 20, no. 1 (2025): 253-264.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/