SLC30A4-AS1 Mediates the Senescence of Periodontal Ligament Stem Cells in Inflammatory Environments via the Alternative Splicing of TP53BP1

Mei Xu , Dian Gan , Xi-Yu Zhang , Xiao-Tao He , Rui Xin Wu , Yuan Yin , Rui Jin , Lin Li , Yu-Jie Tan , Fa-Ming Chen , Xuan Li , Bei-Min Tian

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13778

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13778 DOI: 10.1111/cpr.13778
ORIGINAL ARTICLE

SLC30A4-AS1 Mediates the Senescence of Periodontal Ligament Stem Cells in Inflammatory Environments via the Alternative Splicing of TP53BP1

Author information +
History +
PDF

Abstract

Periodontal ligament stem cells (PDLSCs) are key cells that suppress periodontal damage during both the progression and recovery stages of periodontitis. Although substantial evidence has demonstrated that incubation under an inflammatory condition may accelerate senescence of PDLSCs, whether cellular senescence in response to inflammatory incubation contributes to cell dysfunction remain unexplored. In this study, we first observed inflammation-caused PDLSC senescence in periodontitis based on comparisons of matched patients, and this cellular senescence was demonstrated in healthy cells that were subjected to inflammatory conditions. We subsequently designed further experiments to investigate the possible mechanism underlying inflammation-induced PDLSC senescence with a particular focus on the role of long noncoding RNAs (lncRNAs). LncRNA microarray analysis and functional gain/loss studies revealed SLC30A4-AS1 as a regulator of inflammation-mediated PDLSC senescence. By full-length transcriptome sequencing, we found that SLC30A4-AS1 interacted with SRSF3 to affect the alternative splicing (AS) of TP53BP1 and alter the expression of TP53BP1-204. Further functional studies showed that decreased expression of TP53BP1-204 reversed PDLSC senescence, and SLC30A4-AS1 overexpression-induced PDLSC senescence was abolished by TP53BP1-204 knockdown. Our data suggest for the first time that SLC30A4-AS1 plays a key role in regulating PDLSC senescence in inflammatory environments by modulating the AS of TP53BP1.

Keywords

alternative splicing / cell senescence / inflammation / periodontal ligament stem cells / TP53BP1

Cite this article

Download citation ▾
Mei Xu, Dian Gan, Xi-Yu Zhang, Xiao-Tao He, Rui Xin Wu, Yuan Yin, Rui Jin, Lin Li, Yu-Jie Tan, Fa-Ming Chen, Xuan Li, Bei-Min Tian. SLC30A4-AS1 Mediates the Senescence of Periodontal Ligament Stem Cells in Inflammatory Environments via the Alternative Splicing of TP53BP1. Cell Proliferation, 2025, 58(4): e13778 DOI:10.1111/cpr.13778

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. P. Darveau, “Periodontitis: A Polymicrobial Disruption of Host Homeostasis,” Nature Reviews. Microbiology 8, no. 7 (2010): 481-490, https://doi.org/10.1038/nrmicro2337.

[2]

A. R. Sanz, F. S. Carrion, and A. P. Chaparro, “Mesenchymal Stem Cells From the Oral Cavity and Their Potential Value in Tissue Engineering,” Periodontology 2000 67, no. 1 (2015): 251-267, https://doi.org/10.1111/prd.12070.

[3]

F. Feng, K. Akiyama, Y. Liu, et al., “Utility of PDL Progenitors for in vivo Tissue Regeneration: A Report of 3 Cases,” Oral Diseases 16, no. 1 (2010): 20-28, https://doi.org/10.1111/j.1601-0825.2009.01593.x.

[4]

F. M. Chen, H. H. Sun, H. Lu, and Q. Yu, “Stem Cell-Delivery Therapeutics for Periodontal Tissue Regeneration,” Biomaterials 33, no. 27 (2012): 6320-6344, https://doi.org/10.1016/j.biomaterials.2012.05.048.

[5]

F. M. Chen, L. N. Gao, B. M. Tian, et al., “Treatment of Periodontal Intrabony Defects Using Autologous Periodontal Ligament Stem Cells: A Randomized Clinical Trial,” Stem Cell Research & Therapy 7 (2016): 33, https://doi.org/10.1186/s13287-016-0288-1.

[6]

C. Li, X. Wang, J. Tan, T. Wang, and Q. Wang, “The Immunomodulatory Properties of Periodontal Ligament Stem Cells Isolated From Inflamed Periodontal Granulation,” Cells, Tissues, Organs 199, no. 4 (2014): 256-265, https://doi.org/10.1159/000367986.

[7]

Y. Liu, W. Liu, C. Hu, et al., “MiR-17 Modulates Osteogenic Differentiation Through a Coherent Feed-Forward Loop in Mesenchymal Stem Cells Isolated From Periodontal Ligaments of Patients With Periodontitis,” Stem Cells 29, no. 11 (2011): 1804-1816, https://doi.org/10.1002/stem.728.

[8]

N. Liu, S. Shi, M. Deng, et al., “High Levels of β-Catenin Signaling Reduce Osteogenic Differentiation of Stem Cells in Inflammatory Microenvironments Through Inhibition of the Noncanonical Wnt Pathway,” Journal of Bone and Mineral Research 26, no. 9 (2011): 2082-2095, https://doi.org/10.1002/jbmr.440.

[9]

H. N. Tang, Y. Xia, Y. Yu, R. X. Wu, L. N. Gao, and F. M. Chen, “Stem Cells Derived From “Inflamed” and Healthy Periodontal Ligament Tissues and Their Sheet Functionalities: A Patient-Matched Comparison,” Journal of Clinical Periodontology 43, no. 1 (2016): 72-84, https://doi.org/10.1111/jcpe.12501.

[10]

X. Chen, C. Hu, G. Wang, et al., “Nuclear Factor-κB Modulates Osteogenesis of Periodontal Ligament Stem Cells Through Competition With β-Catenin Signaling in Inflammatory Microenvironments,” Cell Death & Disease 4, no. 2 (2013): e510, https://doi.org/10.1038/cddis.2013.14.

[11]

Y. Wang, O. Andrukhov, and X. Rausch-Fan, “Oxidative Stress and Antioxidant System in Periodontitis,” Frontiers in Physiology 8 (2017): 910, https://doi.org/10.3389/fphys.2017.00910.

[12]

W. Zheng, S. Wang, D. Ma, L. Tang, Y. Duan, and Y. Jin, “Loss of Proliferation and Differentiation Capacity of Aged Human Periodontal Ligament Stem Cells and Rejuvenation by Exposure to the Young Extrinsic Environment,” Tissue Engineering. Part A 15, no. 9 (2009): 2363-2371, https://doi.org/10.1089/ten.tea.2008.0562.

[13]

U. Braunschweig, N. L. Barbosa-Morais, Q. Pan, et al., “Widespread Intron Retention in Mammals Functionally Tunes Transcriptomes,” Genome Research 24, no. 11 (2014): 1774-1786, https://doi.org/10.1101/gr.177790.114.

[14]

B. P. Lee, L. C. Pilling, F. Emond, et al., “Changes in the Expression of Splicing Factor Transcripts and Variations in Alternative Splicing Are Associated With Lifespan in Mice and Humans,” Aging Cell 15, no. 5 (2016): 903-913, https://doi.org/10.1111/acel.12499.

[15]

K. Fujita, A. M. Mondal, I. Horikawa, et al., “p53 Isoforms Delta133p53 and p53β are Endogenous Regulators of Replicative Cellular Senescence,” Nature Cell Biology 11, no. 9 (2009): 1135-1142, https://doi.org/10.1038/ncb1928.

[16]

T. Derrien, R. Johnson, G. Bussotti, et al., “The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression,” Genome Research 22, no. 9 (2012): 1775-1789, https://doi.org/10.1101/gr.132159.111.

[17]

V. X. Fu, J. R. Dobosy, J. A. Desotelle, et al., “Aging and Cancer-Related Loss of Insulin-Like Growth Factor 2 Imprinting in the Mouse and Human Prostate,” Cancer Research 68, no. 16 (2008): 6797-6802, https://doi.org/10.1158/0008-5472.CAN-08-1714.

[18]

J. H. Yoon, K. Abdelmohsen, J. Kim, et al., “Scaffold Function of Long Non-coding RNA HOTAIR in Protein Ubiquitination,” Nature Communications 4 (2013): 2939, https://doi.org/10.1038/ncomms3939.

[19]

L. Lei, Q. Zeng, J. Lu, et al., “MALAT1 Participates in Ultraviolet B-Induced Photo-Aging via Regulation of the ERK/MAPK Signaling Pathway,” Molecular Medicine Reports 15, no. 6 (2017): 3977-3982, https://doi.org/10.3892/mmr.2017.6532.

[20]

K. Yap, S. Mukhina, G. Zhang, J. S. C. Tan, H. S. Ong, and E. V. Makeyev, “A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival,” Molecular Cell 72, no. 3 (2018): 525-540, https://doi.org/10.1016/j.molcel.2018.08.041.

[21]

J. C. Gomez-Verjan, E. R. Vazquez-Martinez, N. A. Rivero-Segura, and R. H. Medina-Campos, “The RNA World of Human Ageing,” Human Genetics 137, no. 11-12 (2018): 865-879, https://doi.org/10.1007/s00439-018-1955-3.

[22]

X. Li, B. M. Tian, D. K. Deng, et al., “LncRNA GACAT2 Binds With Protein PKM1/2 to Regulate Cell Mitochondrial Function and Cementogenesis in an Inflammatory Environment,” Bone Research 10, no. 1 (2022): 29, https://doi.org/10.1038/s41413-022-00197-x.

[23]

B. Tian, X. Li, J. Zhang, et al., “A 3D-Printed Molybdenum-Containing Scaffold Exerts Dual Pro-Osteogenic and Anti-Osteoclastogenic Effects to Facilitate Alveolar Bone Repair,” International Journal of Oral Science 14, no. 1 (2022): 45, https://doi.org/10.1038/s41368-022-00195-z.

[24]

X. Wang, X. Zhang, Y. Dang, et al., “Long Noncoding RNA HCP5 Participates in Premature Ovarian Insufficiency by Transcriptionally Regulating MSH5 and DNA Damage Repair via YB1,” Nucleic Acids Research 48, no. 8 (2020): 4480-4491, https://doi.org/10.1093/nar/gkaa127.

[25]

J. P. Coppe, P. Y. Desprez, A. Krtolica, and J. Campisi, “The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression,” Annual Review of Pathology 5 (2010): 99-118, https://doi.org/10.1146/annurev-pathol-121808-102144.

[26]

I. Dikic and Z. Elazar, “Mechanism and Medical Implications of Mammalian Autophagy,” Nature Reviews. Molecular Cell Biology 19, no. 6 (2018): 349-364, https://doi.org/10.1038/s41580-018-0003-4.

[27]

A. Kinner, W. Wu, C. Staudt, and G. Iliakis, “Gamma-H2AX in Recognition and Signaling of DNA Double-Strand Breaks in the Context of Chromatin,” Nucleic Acids Research 36, no. 17 (2008): 5678-5694, https://doi.org/10.1093/nar/gkn550.

[28]

X. Li, X. T. He, D. Q. Kong, et al., “M2 Macrophages Enhance the Cementoblastic Differentiation of Periodontal Ligament Stem Cells via the Akt and JNK Pathways,” Stem Cells 37, no. 12 (2019): 1567-1580, https://doi.org/10.1002/stem.3076.

[29]

X. Xiang, Y. Fu, K. Zhao, et al., “Cellular Senescence in Hepatocellular Carcinoma Induced by a Long Non-coding RNA-Encoded Peptide PINT87aa by Blocking FOXM1-Mediated PHB2,” Theranostics 11, no. 10 (2021): 4929-4944, https://doi.org/10.7150/thno.55672.

[30]

J. Chou, M. Kaller, S. Jaeckel, M. Rokavec, and H. Hermeking, “AP4 Suppresses DNA Damage, Chromosomal Instability and Senescence via Inducing MDC1/Mediator of DNA Damage Checkpoint 1 and Repressing MIR22HG/miR-22-3p,” Molecular Cancer 21, no. 1 (2022): 120, https://doi.org/10.1186/s12943-022-01581-1.

[31]

E. P. Booy, E. K. McRae, A. Koul, F. Lin, and S. A. McKenna, “The Long Non-coding RNA BC200 (BCYRN1) is Critical for Cancer Cell Survival and Proliferation,” Molecular Cancer 16, no. 1 (2017): 109, https://doi.org/10.1186/s12943-017-0679-7.

[32]

C. Murgia, D. Grosser, A. Q. Truong-Tran, et al., “Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation,” Nutrients 3, no. 11 (2011): 910-928, https://doi.org/10.3390/nu3110910.

[33]

T. Saito, K. Takahashi, N. Nakagawa, et al., “Deficiencies of Hippocampal Zn and ZnT3 Accelerate Brain Aging of Rat,” Biochemical and Biophysical Research Communications 279, no. 2 (2000): 505-511, https://doi.org/10.1006/bbrc.2000.3946.

[34]

G. Lyubartseva, J. L. Smith, W. R. Markesbery, and M. A. Lovell, “Alterations of Zinc Transporter Proteins ZnT-1, ZnT-4 and ZnT-6 in Preclinical Alzheimer's Disease Brain,” Brain Pathology 20, no. 2 (2010): 343-350, https://doi.org/10.1111/j.1750-3639.2009.00283.x.

[35]

P. J. Batista and H. Y. Chang, “Long Noncoding RNAs: Cellular Address Codes in Development and Disease,” Cell 152, no. 6 (2013): 1298-1307, https://doi.org/10.1016/j.cell.2013.02.012.

[36]

M. C. Bridges, A. C. Daulagala, and A. Kourtidis, “LNCcation: lncRNA Localization and Function,” Journal of Cell Biology 220, no. 2 (2021): e202009045, https://doi.org/10.1083/jcb.202009045.

[37]

K. Chen, Z. Hu, L. E. Wang, et al., “Polymorphic TP53BP1 and TP53 Gene Interactions Associated With Risk of Squamous Cell Carcinoma of the Head and Neck,” Clinical Cancer Research 13, no. 14 (2007): 4300-4305, https://doi.org/10.1158/1078-0432.CCR-07-0469.

[38]

N. Hug, D. Longman, and J. F. Caceres, “Mechanism and Regulation of the Nonsense-Mediated Decay Pathway,” Nucleic Acids Research 44, no. 4 (2016): 1483-1495, https://doi.org/10.1093/nar/gkw010.

[39]

J. Chen, J. Crutchley, D. Zhang, K. Owzar, and M. B. Kastan, “Identification of a DNA Damage-Induced Alternative Splicing Pathway That Regulates p53 and Cellular Senescence Markers,” Cancer Discovery 7, no. 7 (2017): 766-781, https://doi.org/10.1158/2159-8290.CD-16-0908.

[40]

D. Li, W. Yu, and M. Lai, “Towards Understandings of Serine/Arginine-Rich Splicing Factors,” Acta Pharmaceutica Sinica B 13, no. 8 (2023): 3181-3207, https://doi.org/10.1016/j.apsb.2023.05.022.

[41]

J. Kim, R. Y. Park, Y. Kee, S. Jeong, and T. Ohn, “Splicing Factor SRSF3 Represses Translation of p21(cip1/waf1) mRNA,” Cell Death & Disease 13, no. 11 (2022): 933, https://doi.org/10.1038/s41419-022-05371-x.

[42]

Y. Tang, I. Horikawa, M. Ajiro, et al., “Downregulation of Splicing Factor SRSF3 Induces p53β, an Alternatively Spliced Isoform of p53 That Promotes Cellular Senescence,” Oncogene 32, no. 22 (2013): 2792-2798, https://doi.org/10.1038/onc.2012.288.

[43]

T. Shen, H. Li, Y. Song, et al., “Alternative Polyadenylation Dependent Function of Splicing Factor SRSF3 Contributes to Cellular Senescence,” Aging (Albany NY) 11, no. 5 (2019): 1356-1388, https://doi.org/10.18632/aging.101836.

[44]

P. M. Bartold, S. Shi, and S. Gronthos, “Stem Cells and Periodontal Regeneration,” Periodontology 2000 40 (2006): 164-172, https://doi.org/10.1111/j.1600-0757.2005.00139.x.

[45]

B. M. Seo, M. Miura, S. Gronthos, et al., “Investigation of Multipotent Postnatal Stem Cells From Human Periodontal Ligament,” Lancet 364, no. 9429 (2004): 149-155, https://doi.org/10.1016/S0140-6736(04)16627-0.

[46]

X. Kong, Y. Liu, R. Ye, et al., “GSK3β Is a Checkpoint for TNF-α-Mediated Impaired Osteogenic Differentiation of Mesenchymal Stem Cells in Inflammatory Microenvironments,” Biochimica et Biophysica Acta 1830, no. 11 (2013): 5119-5129, https://doi.org/10.1016/j.bbagen.2013.07.027.

[47]

Y. Xia, H. N. Tang, R. X. Wu, Y. Yu, L. N. Gao, and F. M. Chen, “Cell Responses to Conditioned Media Produced by Patient-Matched Stem Cells Derived From Healthy and Inflamed Periodontal Ligament Tissues,” Journal of Periodontology 87, no. 5 (2016): e53-e63, https://doi.org/10.1902/jop.2015.150462.

[48]

Y. Zhao, M. Simon, A. Seluanov, and V. Gorbunova, “DNA Damage and Repair in Age-Related Inflammation,” Nature Reviews. Immunology 23, no. 2 (2023): 75-89, https://doi.org/10.1038/s41577-022-00751-y.

[49]

A. J. Delima, T. Oates, R. Assuma, et al., “Soluble Antagonists to Interleukin-1 (IL-1) and Tumor Necrosis Factor (TNF) Inhibits Loss of Tissue Attachment in Experimental Periodontitis,” Journal of Clinical Periodontology 28, no. 3 (2001): 233-240, https://doi.org/10.1034/j.1600-051x.2001.028003233.x.

[50]

X. Y. Xu, B. M. Tian, Y. Xia, et al., “Exosomes Derived From P2X7 Receptor Gene-Modified Cells Rescue Inflammation-Compromised Periodontal Ligament Stem Cells From Dysfunction,” Stem Cells Translational Medicine 9, no. 11 (2020): 1414-1430, https://doi.org/10.1002/sctm.19-0418.

[51]

A. L. Ray, K. L. Berggren, S. R. Cruz, G. N. Gan, and E. J. Beswick, “Inhibition of MK2 Suppresses IL-1β, IL-6, and TNF-α-Dependent Colorectal Cancer Growth,” International Journal of Cancer 142, no. 8 (2018): 1702-1711, https://doi.org/10.1002/ijc.31191.

[52]

M. Cui, Y. Huang, C. Tian, Y. Zhao, and J. Zheng, “FOXO3a Inhibits TNF-α- and IL-1β-Induced Astrocyte Proliferation:Implication for Reactive Astrogliosis,” GLIA 59, no. 4 (2011): 641-654, https://doi.org/10.1002/glia.21134.

[53]

S. Chen and X. Shen, “Long Noncoding RNAs: Functions and Mechanisms in Colon Cancer,” Molecular Cancer 19, no. 1 (2020): 167, https://doi.org/10.1186/s12943-020-01287-2.

[54]

Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe, “Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing,” Nature Genetics 40, no. 12 (2008): 1413-1415, https://doi.org/10.1038/ng.259.

[55]

L. K. Southworth, A. B. Owen, and S. K. Kim, “Aging Mice Show a Decreasing Correlation of Gene Expression Within Genetic Modules,” PLoS Genetics 5, no. 12 (2009): e1000776, https://doi.org/10.1371/journal.pgen.1000776.

[56]

L. W. Harries, D. Hernandez, W. Henley, et al., “Human Aging Is Characterized by Focused Changes in Gene Expression and Deregulation of Alternative Splicing,” Aging Cell 10, no. 5 (2011): 868-878, https://doi.org/10.1111/j.1474-9726.2011.00726.x.

[57]

P. Mazin, J. Xiong, X. Liu, et al., “Widespread Splicing Changes in Human Brain Development and Aging,” Molecular Systems Biology 9 (2013): 633, https://doi.org/10.1038/msb.2012.67.

[58]

E. Callen, M. Di Virgilio, M. J. Kruhlak, et al., “53BP1 Mediates Productive and Mutagenic DNA Repair Through Distinct Phosphoprotein Interactions,” Cell 153, no. 6 (2013): 1266-1280, https://doi.org/10.1016/j.cell.2013.05.023.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/