Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis

Shital Wakale , Yang Chen , Antonia Rujia Sun , Chamikara Liyanage , Jennifer Gunter , Jyotsna Batra , Ross Crawford , Hongxun Sang , Indira Prasadam

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13776

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (4) : e13776 DOI: 10.1111/cpr.13776
ORIGINAL ARTICLE

Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.

Keywords

ageing / bone marrow mesenchymal stem cells / cartilage / extracellular vesicles / osteoarthritis / senescence

Cite this article

Download citation ▾
Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam. Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis. Cell Proliferation, 2025, 58(4): e13776 DOI:10.1111/cpr.13776

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhang and J. M. Jordan, “Epidemiology of Osteoarthritis,” Clinics in Geriatric Medicine 26 (2010): 355-369.

[2]

A. D. Woolf and B. Pfleger, “Burden of Major Musculoskeletal Conditions,” Bulletin of the World Health Organization 81 (2003): 646-656.

[3]

World Health Organization, Active Ageing: A Policy Framework (No. WHO/NMH/NPH/02.8)Madrid, Spain: World Health Organization, 2002).

[4]

S. Grässel and D. Muschter, “Recent Advances in the Treatment of Osteoarthritis,” F1000Research 9 (2020): F1000 Faculty Rev-325.

[5]

J. Li, Q. Shao, X. Zhu, and G. Sun, “Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis and Their Effects on the Expression of Serum TNF-α and IL-6,” Journal of Musculoskeletal & Neuronal Interactions 20 (2020): 128-135.

[6]

I. Prasadam, A. Akuien, T. E. Friis, et al., “Mixed Cell Therapy of Bone Marrow-Derived Mesenchymal Stem Cells and Articular Cartilage Chondrocytes Ameliorates Osteoarthritis Development,” Laboratory Investigation 98 (2018): 106-116.

[7]

K. L. Wong, K. B. L. Lee, B. C. Tai, P. Law, E. H. Lee, and J. H. P. Hui, “Injectable Cultured Bone Marrow-Derived Mesenchymal Stem Cells in Varus Knees With Cartilage Defects Undergoing High Tibial Osteotomy: A Prospective, Randomized Controlled Clinical Trial With 2 Years' Follow-Up,” Arthroscopy: The Journal of Arthroscopic & Related Surgery 29 (2013): 2020-2028.

[8]

X. Fan, X. Wu, R. Crawford, Y. Xiao, and I. Prasadam, “Macro, Micro, and Molecular. Changes of the Osteochondral Interface in Osteoarthritis Development,” Frontiers in Cell and Development Biology 9 (2021): 659654.

[9]

X. Wu, X. Fan, R. Crawford, Y. Xiao, and I. Prasadam, “The Metabolic Landscape in Osteoarthritis,” Aging and Disease 13 (2022): 1166-1182.

[10]

H. Al Faqeh, B. M. Y. N. Hamdan, H. C. Chen, B. S. Aminuddin, and B. H. I. Ruszymah, “The Potential of Intra-Articular Injection of Chondrogenic-Induced Bone Marrow Stem Cells to Retard the Progression of Osteoarthritis in a Sheep Model,” Experimental Gerontology 47 (2012): 458-464.

[11]

M. Agung, M. Ochi, S. Yanada, et al., “Mobilization of Bone Marrow-Derived Mesenchymal Stem Cells Into the Injured Tissues After Intraarticular Injection and Their Contribution to Tissue Regeneration,” Knee Surgery, Sports Traumatology, Arthroscopy 14 (2006): 1307-1314.

[12]

A. Vega, M. A. Martín-Ferrero, F. del Canto, et al., “Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial,” Transplantation 99 (2015): 1681-1690.

[13]

J. Chahal, A. Gómez-Aristizábal, K. Shestopaloff, et al., “Bone Marrow Mesenchymal Stromal Cell Treatment in Patients With Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation,” Stem Cells Translational Medicine 8 (2019): 746-757.

[14]

Y. Xiao, Mesenchymal Stem Cells (Hauppauge, New York: Nova Science Publishers, 2011).

[15]

R. C. Lai, R. W. Yeo, and S. K. Lim, “Mesenchymal Stem Cell Exosomes,” Seminars in Cell & Developmental Biology 40 (2015): 82-88.

[16]

G. van Niel, G. D'Angelo, and G. Raposo, “Shedding Light on the Cell Biology of Extracellular Vesicles,” Nature Reviews Molecular Cell Biology 19 (2018): 213-228.

[17]

C. Mas-Bargues and M. Alique, “Extracellular Vesicles as “Very Important Particles” (VIPs) in Aging,” International Journal of Molecular Sciences 24 (2023): 4250.

[18]

W. Zhang, X. X. Fang, Q. C. Li, W. Pi, and N. Han, “Reduced Graphene Oxide-Embedded Nerve Conduits Loaded With Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Peripheral Nerve Regeneration,” Neural Regeneration Research 18 (2023): 200-206.

[19]

A. Dorronsoro and P. D. Robbins, “Regenerating the Injured Kidney With Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes,” Stem Cell Research & Therapy 4 (2013): 39.

[20]

N. Noren Hooten, A. M. Byappanahalli, M. Vannoy, V. Omoniyi, and M. K. Evans, “Influences of Age, Race, and Sex on Extracellular Vesicle Characteristics,” Theranostics 12 (2022): 4459-4476.

[21]

A. Dorronsoro, F. E. Santiago, D. Grassi, et al., “Mesenchymal Stem Cell-Derived Extracellular Vesicles Reduce Senescence and Extend Health Span in Mouse Models of Aging,” Aging Cell 20 (2021): e13337.

[22]

M. Takasugi, R. Okada, A. Takahashi, D. Virya Chen, S. Watanabe, and E. Hara, “Small Extracellular Vesicles Secreted From Senescent Cells Promote Cancer Cell Proliferation Through EphA2,” Nature Communications 8 (2017): 15729.

[23]

B. D. Lehmann, M. S. Paine, A. M. Brooks, et al., “Senescence-Associated Exosome Release From Human Prostate Cancer Cells,” Cancer Research 68 (2008): 7864-7871.

[24]

X. Wu, R. Crawford, Y. Xiao, X. Mao, and I. Prasadam, “Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration,” Cells 10 (2021): 251.

[25]

S. Sekar, X. Wu, T. Friis, R. Crawford, I. Prasadam, and Y. Xiao, “Saturated Fatty Acids Promote Chondrocyte Matrix Remodeling Through Reprogramming of Autophagy Pathways,” Nutrition 54 (2018): 144-152.

[26]

A. R. Sun, X. Wu, R. Crawford, et al., “Effects of Diet Induced Weight Reduction on Cartilage Pathology and Inflammatory Mediators in the Joint Tissues,” Frontiers in Medicine 8 (2021): 628843.

[27]

M. Skliar and V. S. Chernyshev, “Imaging of Extracellular Vesicles by Atomic Force Microscopy,” Journal of Visualized Experiments (2019): 151.

[28]

D. N. Mastronarde, “Automated Electron Microscope Tomography Using Robust Prediction of Specimen Movements,” Journal of Structural Biology 152 (2005): 36-51.

[29]

X. Wu, S. A. A. Showiheen, A. R. Sun, et al., “Exosomes Extraction and Identification,” in Theranostics: Methods and Protocols, eds. J. Batra and S. Srinivasan (New York, NY: Springer New York, 2019), 81-91.

[30]

X. Wu, C. Liyanage, M. Plan, et al., “Dysregulated Energy Metabolism Impairs Chondrocyte Function in Osteoarthritis,” Osteoarthritis and Cartilage 31 (2023): 613-626.

[31]

A. R. Sun, S. K. Panchal, T. Friis, et al., “Obesity-Associated Metabolic Syndrome Spontaneously Induces Infiltration of Pro-Inflammatory Macrophage in Synovium and Promotes Osteoarthritis,” PLoS One 12 (2017): e0183693.

[32]

C. Théry, K. W. Witwer, E. Aikawa, et al., “Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines,” Journal of Extracellular Vesicles 7 (2018): 1535750.

[33]

Y. A. Rim, Y. Nam, and J. H. Ju, “The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression,” International Journal of Molecular Sciences 21 (2020): 2358.

[34]

T. S. Ramasamy, Y. M. Yee, and I. M. Khan, “Chondrocyte Aging: The Molecular Determinants and Therapeutic Opportunities,” Frontiers in Cell and Development Biology 9 (2021): 625497.

[35]

O. H. Jeon, D. R. Wilson, C. C. Clement, et al., “Senescence Cell-Associated Extracellular Vesicles Serve as Osteoarthritis Disease and Therapeutic Markers,” JCI Insight 4 (2019): e125019.

[36]

D. Philipot, D. Guérit, D. Platano, et al., “p16INK4a and Its Regulator miR-24 Link Senescence and Chondrocyte Terminal Differentiation-Associated Matrix Remodeling in Osteoarthritis,” Arthritis Research & Therapy 16 (2014): R58.

[37]

A. O. Masson, R. Hess, K. O'Brien, et al., “Increased Levels of p21(CIP1/WAF1) Correlate With Decreased Chondrogenic Differentiation Potential in Synovial Membrane Progenitor Cells,” Mechanisms of Ageing and Development 149 (2015): 31-40.

[38]

H. B. Si, T. M. Yang, L. Li, et al., “miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence,” Molecular Therapy - Nucleic Acids 19 (2020): 15-30.

[39]

X. Cao, P. Luo, J. Huang, et al., “Intraarticular Senescent Chondrocytes Impair the Cartilage Regeneration Capacity of Mesenchymal Stem Cells,” Stem Cell Research & Therapy 10 (2019): 86.

[40]

B. Mir and C. Goettsch, “Extracellular Vesicles as Delivery Vehicles of Specific Cellular Cargo,” Cells 9 (2020): 1601.

[41]

J. Sanz-Ros, N. Romero-García, C. Mas-Bargues, et al., “Small Extracellular Vesicles From Young Adipose-Derived Stem Cells Prevent Frailty, Improve Health Span, and Decrease Epigenetic Age in Old Mice,” Science Advances 8 (2022): eabq2226.

[42]

S. Zhang and Z. Jin, “Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing Long Noncoding RNA NEAT1 Relieve Osteoarthritis,” Oxidative Medicine and Cellular Longevity 2022 (2022): 5517648.

[43]

L. He, T. He, J. Xing, et al., “Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Protect Cartilage Damage and Relieve Knee Osteoarthritis Pain in a Rat Model of Osteoarthritis,” Stem Cell Research & Therapy 11 (2020): 276.

[44]

S. Li, J. Liu, S. Liu, W. Jiao, and X. Wang, “Mesenchymal Stem Cell-Derived Extracellular Vesicles Prevent the Development of Osteoarthritis via the circHIPK3/miR-124-3p/MYH9 Axis,” Journal of Nanobiotechnology 19 (2021): 194.

[45]

R. Kumari and P. Jat, “Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype,” Frontiers in Cell and Development Biology 9 (2021): 645593.

[46]

J. Lieberthal, N. Sambamurthy, and C. R. Scanzello, “Inflammation in Joint Injury and Post-Traumatic Osteoarthritis,” Osteoarthritis and Cartilage 23 (2015): 1825-1834.

[47]

L. A. Vonk, S. F. J. van Dooremalen, N. Liv, et al., “Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro,” Theranostics 8 (2018): 906-920.

[48]

J. Boulestreau, M. Maumus, P. Rozier, C. Jorgensen, and D. Noël, “Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging,” Frontiers in Cell and Development Biology 8 (2020): 107.

[49]

C. Davis, A. Dukes, M. Drewry, et al., “MicroRNA-183-5p Increases With Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence,” Tissue Engineering. Part A 23 (2017): 1231-1240.

[50]

M. T. Valenti, L. Dalle Carbonare, D. Zipeto, and M. Mottes, “Control of the Autophagy Pathway in Osteoarthritis: Key Regulators, Therapeutic Targets and Therapeutic Strategies,” International Journal of Molecular Sciences 22 (2021): 2700.

[51]

R. F. Loeser, J. A. Collins, and B. O. Diekman, “Ageing and the Pathogenesis of Osteoarthritis,” Nature Reviews Rheumatology 12 (2016): 412-420.

[52]

M. Y. Ansari, N. M. Khan, I. Ahmad, and T. M. Haqqi, “Parkin Clearance of Dysfunctional Mitochondria Regulates ROS Levels and Increases Survival of Human Chondrocytes,” Osteoarthritis and Cartilage 26 (2018): 1087-1097.

[53]

M. Y. Ansari, H. C. Ball, S. J. Wase, K. Novak, and T. M. Haqqi, “Lysosomal Dysfunction in Osteoarthritis and Aged Cartilage Triggers Apoptosis in Chondrocytes Through BAX Mediated Release of Cytochrome c,” Osteoarthritis and Cartilage 29 (2021): 100-112.

[54]

P. Luo, F. Gao, D. Niu, et al., “The Role of Autophagy in Chondrocyte Metabolism and Osteoarthritis: A Comprehensive Research Review,” BioMed Research International 2019 (2019): 5171602.

[55]

W. C. Kao, J. C. Chen, P. C. Liu, et al., “The Role of Autophagy in Osteoarthritic Cartilage,” Biomolecules 12 (2022): 1357.

[56]

M. Palmieri, S. Impey, H. Kang, et al., “Characterization of the CLEAR Network Reveals an Integrated Control of Cellular Clearance Pathways,” Human Molecular Genetics 20 (2011): 3852-3866.

[57]

L. T. Le, T. E. Swingler, N. Crowe, et al., “The microRNA-29 Family in Cartilage Homeostasis and Osteoarthritis,” Journal of Molecular Medicine (Berlin, Germany) 94 (2016): 583-596.

[58]

J. H. Ryu, Y. Shin, Y. H. Huh, S. Yang, C. H. Chun, and J. S. Chun, “Hypoxia-Inducible Factor-2α Regulates Fas-Mediated Chondrocyte Apoptosis During Osteoarthritic Cartilage Destruction,” Cell Death and Differentiation 19 (2012): 440-450.

[59]

L. Tan, A. R. Armstrong, S. Rosas, et al., “Nuclear Protein-1 Is the Common Link for Pathways Activated by Aging and Obesity in Chondrocytes: A Potential Therapeutic Target for Osteoarthritis,” FASEB Journal 37 (2023): e23133.

[60]

Y. Jin, M. Xu, H. Zhu, et al., “Therapeutic Effects of Bone Marrow Mesenchymal Stem Cells-Derived Exosomes on Osteoarthritis,” Journal of Cellular and Molecular Medicine 25 (2021): 9281-9294.

[61]

X. Du, L. Cai, J. Xie, and X. Zhou, “The Role of TGF-beta3 in Cartilage Development and Osteoarthritis,” Bone Research 11 (2023): 2.

[62]

S. Hu, C. Zhang, L. Ni, et al., “Stabilization of HIF-1α Alleviates Osteoarthritis via Enhancing Mitophagy,” Cell Death & Disease 11 (2020): 481.

[63]

J. Xie, J. Lin, M. Wei, et al., “Sustained Akt Signaling in Articular Chondrocytes Causes Osteoarthritis via Oxidative Stress-Induced Senescence in Mice,” Bone Research 7 (2019): 23.

[64]

J.-F. Xue, Z.-M. Shi, J. Zou, and X.-L. Li, “Inhibition of PI3K/AKT/mTOR Signaling Pathway Promotes Autophagy of Articular Chondrocytes and Attenuates Inflammatory Response in Rats With Osteoarthritis,” Biomedicine & Pharmacotherapy 89 (2017): 1252-1261.

[65]

Q. Lei, F. Gao, T. Liu, et al., “Extracellular Vesicles Deposit PCNA to Rejuvenate Aged Bone Marrow-Derived Mesenchymal Stem Cells and Slow Age-Related Degeneration,” Science Translational Medicine 13 (2021), https://doi.org/10.1126/scitranslmed.aaz8697.

[66]

S. Chaib, T. Tchkonia, and J. L. Kirkland, “Cellular Senescence and Senolytics: The Path to the Clinic,” Nature Medicine 28 (2022): 1556-1568, https://doi.org/10.1038/s41591-022-01923-y.

[67]

A. F. Chin, J. Han, C. C. Clement, et al., “Senolytic Treatment Reduces Oxidative Protein Stress in an Aging Male Murine Model of Post-Traumatic Osteoarthritis,” Aging Cell 22 (2023): e13979, https://doi.org/10.1111/acel.13979.

[68]

Y. Liu, Z. Zhang, T. Li, H. Xu, and H. Zhang, “Senescence in Osteoarthritis: From Mechanism to Potential Treatment,” Arthritis Research & Therapy 24 (2022): 174, https://doi.org/10.1186/s13075-022-02859-x.

[69]

H.-Y. Liu, C.-F. Huang, T.-C. Lin, et al., “Delayed Animal Aging Through the Recovery of Stem Cell Senescence by Platelet Rich Plasma,” Biomaterials 35 (2014): 9767-9776, https://doi.org/10.1016/j.biomaterials.2014.08.034.

[70]

J. Vun, N. Iqbal, E. Jones, and P. Ganguly, “Anti-Aging Potential of Platelet Rich Plasma (PRP): Evidence from Osteoarthritis (OA) and Applications in Senescence and Inflammaging,” Bioengineering 10 (2023): 987.

[71]

I. Andia and N. Maffulli, “Platelet-Rich Plasma for Managing Pain and Inflammation in Osteoarthritis,” Nature Reviews Rheumatology 9 (2013): 721-730, https://doi.org/10.1038/nrrheum.2013.141.

[72]

Y. Zhu, T. Tchkonia, T. Pirtskhalava, et al., “The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs,” Aging Cell 14 (2015): 644-658, https://doi.org/10.1111/acel.12344.

[73]

D. Szwedowski, J. Szczepanek, Ł. Paczesny, et al., “The Effect of Platelet-Rich Plasma on the Intra-Articular Microenvironment in Knee Osteoarthritis,” International Journal of Molecular Sciences 22, no. 11 (2021): 5492.

[74]

S. Khatab, G. M. van Buul, N. Kops, et al., “Intra-Articular Injections of Platelet-Rich Plasma Releasate Reduce Pain and Synovial Inflammation in a Mouse Model of Osteoarthritis,” American Journal of Sports Medicine 46, no. 4 (2018): 977-986.

[75]

Y. Chen, H. Sang, S. Wu, et al., “Inadequate Anticoagulation and Hyperuricemia Cause Knee Pain After Platelet-Rich Plasma Injection: A Retrospective Study,” Journal of Orthopaedic Surgery (Hong Kong) 32, no. 2 (2024): 10225536241277604, https://doi.org/10.1177/10225536241277604.

[76]

G. Huang, S. H. A. Hua, T. Yang, et al., “Platelet-Rich Plasma Shows Beneficial Effects for Patients with Knee Osteoarthritis by Suppressing Inflammatory Factors,” Experimental and Therapeutic Medicine 15, no. 3 (2018): 3096-3102.

[77]

C. Y. Ng, L. T. Kee, M. E. Al-Masawa, et al., “Scalable Production of Extracellular Vesicles and Its Therapeutic Values: A Review,” International Journal of Molecular Sciences 23, no. 14 (2022), https://doi.org/10.3390/ijms23147986.

[78]

Y. Shimizu, E. H. Ntege, Y. Inoue, et al., “Optimizing Mesenchymal Stem Cell Extracellular Vesicles for Chronic Wound Healing: Bioengineering, Standardization, and Safety,” Regenerative Therapy 26 (2024): 260-274, https://doi.org/10.1016/j.reth.2024.06.001.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/