The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition

Shilpa Kuttikrishnan , Abdul W. Ansari , Muhammad Suleman , Fareed Ahmad , Kirti S. Prabhu , Tamam El-Elimat , Feras Q. Alali , Ammira S. Al Shabeeb Akil , Ajaz A. Bhat , Maysaloun Merhi , Said Dermime , Martin Steinhoff , Shahab Uddin

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13773

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13773 DOI: 10.1111/cpr.13773
ORIGINAL ARTICLE

The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition

Author information +
History +
PDF

Abstract

The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3+ T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.

Cite this article

Download citation ▾
Shilpa Kuttikrishnan, Abdul W. Ansari, Muhammad Suleman, Fareed Ahmad, Kirti S. Prabhu, Tamam El-Elimat, Feras Q. Alali, Ammira S. Al Shabeeb Akil, Ajaz A. Bhat, Maysaloun Merhi, Said Dermime, Martin Steinhoff, Shahab Uddin. The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition. Cell Proliferation, 2025, 58(3): e13773 DOI:10.1111/cpr.13773

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013; 14(6): e205-e217.

[2]

Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015; 126(7): 833-841.

[3]

Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016; 2016(1): 580-588.

[4]

Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008; 371(9617): 1030-1043.

[5]

Kansagra A, Dahiya S, Litzow M. Continuing challenges and current issues in acute lymphoblastic leukemia. Leuk Lymphoma. 2018; 59(3): 526-541.

[6]

Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: current progress and future perspectives. Eur J Pharmacol. 2019; 858: 172472.

[7]

El-Elimat T, Raja HA, Ayers S, et al. Meroterpenoids from Neosetophoma sp.: a dioxa[4.3.3]propellane ring system, potent cytotoxicity, and prolific expression. Org Lett. 2019; 21(2): 529-534.

[8]

Kuttikrishnan S, Bhat AA, Mateo JM, et al. Anticancer activity of Neosetophomone B by targeting AKT/SKP2/MTH1 axis in leukemic cells. Biochem Biophys Res Commun. 2022; 601: 59-64.

[9]

Ma KL, Liu J, Gao M, et al. Activation of mTOR contributes to foam cell formation in the radial arteries of patients with end-stage renal disease. Clin Nephrol. 2014; 81(6): 396-404.

[10]

Perluigi M, Pupo G, Tramutola A, et al. Neuropathological role of PI3K/Akt/mTOR axis in down syndrome brain. Biochim Biophys Acta. 2014; 1842(7): 1144-1153.

[11]

Sun YX, Ji X, Mao X, et al. Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer's disease. J Alzheimers Dis. 2014; 38(2): 437-444.

[12]

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12(1): 21-35.

[13]

Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013; 15(6): 555-564.

[14]

Widlund AL, Baur JA, Vang O. mTOR: more targets of resveratrol? Expert Rev Mol Med. 2013; 15: e10.

[15]

Dobbin ZC, Landen CN. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci. 2013; 14(4): 8213-8227.

[16]

Wolin EM. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Cancer Lett. 2013; 335(1): 1-8.

[17]

Zhang H, Berel D, Wang Y, et al. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS One. 2013; 8(1):e54918.

[18]

Hussain AR, Ahmed SO, Ahmed M, et al. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One. 2012; 7(6):e39945.

[19]

Uddin S, Hussain AR, Siraj AK, et al. Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood. 2006; 108(13): 4178-4186.

[20]

Hussain AR, Uddin S, Ahmed M, et al. Prognostic significance of XIAP expression in DLBCL and effect of its inhibition on AKT signalling. J Pathol. 2010; 222(2): 180-190.

[21]

Martelli AM, Chiarini F, Evangelisti C, et al. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget. 2012; 3(4): 371-394.

[22]

Nemes K, Sebestyén A, Márk Á, et al. Mammalian target of rapamycin (mTOR) activity dependent phospho-protein expression in childhood acute lymphoblastic leukemia (ALL). PLoS One. 2013; 8(4):e59335.

[23]

Jotta PY, Ganazza MA, Silva A, et al. Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. Leukemia. 2010; 24(1): 239-242.

[24]

Kuttikrishnan S, Masoodi T, Sher G, et al. Bioinformatics analysis reveals FOXM1/BUB1B signaling pathway as a key target of Neosetophomone B in human leukemic cells: a gene network-based microarray analysis. Front Oncol. 2022; 12: 929996.

[25]

Kuttikrishnan S, Ahmad F, Mateo JM, et al. Neosetophomone B induces apoptosis in multiple myeloma cells via targeting of AKT/SKP2 signaling pathway. Cell Biol Int. 2023; 48: 190-200.

[26]

Kuttikrishnan S, Masoodi T, Ahmad F, et al. In vitro evaluation of Neosetophomone B inducing apoptosis in cutaneous T cell lymphoma by targeting the FOXM1 signaling pathway. J Dermatol Sci. 2023; 112(2): 83-91.

[27]

Kuttikrishnan S, Siveen KS, Prabhu KS, et al. Curcumin induces apoptotic cell death via inhibition of PI3-kinase/AKT pathway in B-precursor acute lymphoblastic leukemia. Front Oncol. 2019; 9: 484.

[28]

Ansari AW, Ahmad F, Raheed T, et al. Azithromycin downregulates ICOS (CD278) and OX40 (CD134) expression and mTOR activity of TCR-activated T cells to inhibit proliferation. Int Immunopharmacol. 2023; 124(Pt A):110831.

[29]

Koliopoulos MG, Lethier M, van der Veen AG, et al. Molecular mechanism of influenza a NS1-mediated TRIM25 recognition and inhibition. Nat Commun. 2018; 9(1): 1820.

[30]

Suleman M, Yousafi Q, Ali J, et al. Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor. Comput Biol Med. 2021; 138: 104936.

[31]

Khan A, Umbreen S, Hameed A, et al. In silico mutagenesis-based remodelling of SARS-CoV-1 peptide (ATLQAIAS) to inhibit SARS-CoV-2: structural-dynamics and free energy calculations. Interdiscip Sci. 2021; 13: 521-534.

[32]

Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol. 2015; 11(12):e1004586.

[33]

Khan A, Randhawa AYW, Balouch AR, et al. Blocking key mutated hotspot residues in the RBD of the omicron variant (B. 1.1. 529) with medicinal compounds to disrupt the RBD-hACE2 complex using molecular screening and simulation approaches. RSC Adv. 2022; 12(12): 7318-7327.

[34]

Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16): 1668-1688.

[35]

Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci. 2013; 3(2): 198-210.

[36]

Meza JC. Steepest descent. Wiley Interdiscip Rev Comput Mol Sci. 2010; 2(6): 719-722.

[37]

Watowich SJ, Meyer ES, Hagstrom R, Josephs R. A stable, rapidly converging conjugate gradient method for energy minimization. J Comput Chem. 1988; 9(6): 650-661.

[38]

Salomon-Ferrer R, Götz AW, Poole D, le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput. 2013; 9(9): 3878-3888.

[39]

Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013; 9(7): 3084-3095.

[40]

Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol. 1994; 235(2): 625-634.

[41]

Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci. 1976; 73(8): 2740-2741.

[42]

Lobanov MY, Bogatyreva N, Galzitskaya O. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008; 42: 623-628.

[43]

Sayaf AM, Ullah Khalid S, Hameed JA, et al. Exploring the natural products chemical space through a molecular search to discover potential inhibitors that target the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD). Front Pharmacol. 2023; 14: 1202128.

[44]

Sayaf AM, Ahmad H, Aslam MA, et al. Pharmacotherapeutic potential of natural products to target the SARS-CoV-2 PLpro using molecular screening and simulation approaches. Appl Biochem Biotechnol. 2023; 195: 1-20.

[45]

Hussain AR, al-Jomah NA, Siraj AK, et al. Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells. Cancer Res. 2007; 67(8): 3888-3897.

[46]

Hussain AR, al-Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis. 2006; 11(2): 245-254.

[47]

Hussain AR, Ahmed M, Ahmed SO, et al. Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein 2 degradation induces cell cycle coupled apoptosis in primary effusion lymphoma cells. Leuk Lymphoma. 2009; 50(7): 1204-1213.

[48]

Uddin S, Ahmed M, Bavi P, et al. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer. Cancer Res. 2008; 68(9): 3379-3388.

[49]

Hussain AR, al-Romaizan M, Ahmed M, et al. Dual targeting of mTOR activity with Torin2 potentiates anticancer effects of cisplatin in epithelial ovarian cancer. Mol Med. 2015; 21(1): 466-478.

[50]

Tasian SK, Teachey DT, Rheingold SR. Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front Oncol. 2014; 4: 108.

[51]

Alameen AA, Simioni C, Martelli AM, et al. Healthy CD4+ T lymphocytes are not affected by targeted therapies against the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia. Oncotarget. 2016; 7(34): 55690-55703.

[52]

Mirza Z, Karim S. Structure-based profiling of potential phytomolecules with AKT1 a key cancer drug target. Molecules. 2023; 28(6):2597.

[53]

Liu K, Watanabe E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol des. 2017; 31: 201-211.

[54]

Jalal K, Khan K, Basharat Z, et al. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. Environ Sci Pollut Res. 2022; 29(40): 60035-60053.

[55]

Fatriansyah JF, Boanerges AG, Kurnianto SR, Pradana AF, Fadilah , Surip SN. Molecular dynamics simulation of ligands from Anredera cordifolia (Binahong) to the main protease (M pro) of SARS-CoV-2. J Trop Med. 2022; 2022: 1-13.

[56]

Ghufran M, Khan HA, Ullah M, et al. In silico strategies for designing of peptide inhibitors of oncogenic K-ras G12V mutant: inhibiting cancer growth and proliferation. Cancer. 2022; 14(19):4884.

[57]

Rashid F, Suleman M, Shah A, et al. Structural analysis on the severe acute respiratory syndrome coronavirus 2 non-structural protein 13 mutants revealed altered bonding network with TANK binding kinase 1 to evade host immune system. Front Microbiol. 2021; 12: 789062.

[58]

Shah A, Rehmat S, Aslam I, et al. Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Comput Biol Med. 2022; 141: 105170.

[59]

Boulos JC, Rahama M, Hegazy MEF, Efferth T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019; 459: 248-267.

[60]

Yuan R, Hou Y, Sun W, et al. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci. 2017; 1401(1): 19-27.

[61]

Hashem S, Ali TA, Akhtar S, et al. Targeting cancer signaling pathways by natural products: exploring promising anti-cancer agents. Biomed Pharmacother. 2022; 150: 113054.

[62]

Siveen KS, Prabhu KS, Achkar IW, et al. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol Cancer. 2018; 17(1): 31.

[63]

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020; 17(7): 395-417.

[64]

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516.

[65]

Yang ZY, di MY, Yuan JQ, et al. The prognostic value of phosphorylated Akt in breast cancer: a systematic review. Sci Rep. 2015; 5: 7758.

[66]

Wallace MR. Acute glomerulonephritis in childhood: a prospective study of hospital admissions. N Z Med J. 1981; 94(690): 134-137.

[67]

Prabhu KS, Siveen KS, Kuttikrishnan S, et al. Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells. PLoS One. 2017; 12(7):e0180895.

[68]

Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022; 13(1): 157-174.

[69]

Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022; 12: 985363.

[70]

Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci. 2023; 335: 122260.

[71]

Wolf P. Inhibitor of apoptosis proteins as therapeutic targets in bladder cancer. Front Oncol. 2023; 13: 1124600.

[72]

Lalaoui N, Vaux DL. Recent advances in understanding inhibitor of apoptosis proteins. F1000Res. 2018; 7: 1889.

[73]

Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000; 151(3): 483-494.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/