Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway
Chenglei Zhang , Jiarui Li , Lijuan Wang , Jie Ma , Xin Li , Yuanyuan Wu , Yanru Ren , Yanhui Yang , Hui Song , Jianning Li , Yi Yang
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13764
Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway
GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119−/− mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
/
| 〈 |
|
〉 |