Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy

Ziying Sun , Xi Cheng , Zheng Wang , Chenfeng Qiao , Hong Qian , Tao Yuan , Zhongyang Lv , Wenshuang Sun , Hanwen Zhang , Yuan Liu , Zhihao Lu , Jintao Lin , Chengteng Lai , Yang Wang , Xiaojiang Yang , Xingyun Wang , Jia Meng , Nirong Bao

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13763

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (3) : e13763 DOI: 10.1111/cpr.13763
ORIGINAL ARTICLE

Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy

Author information +
History +
PDF

Abstract

Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell–cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.

Cite this article

Download citation ▾
Ziying Sun, Xi Cheng, Zheng Wang, Chenfeng Qiao, Hong Qian, Tao Yuan, Zhongyang Lv, Wenshuang Sun, Hanwen Zhang, Yuan Liu, Zhihao Lu, Jintao Lin, Chengteng Lai, Yang Wang, Xiaojiang Yang, Xingyun Wang, Jia Meng, Nirong Bao. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Proliferation, 2025, 58(3): e13763 DOI:10.1111/cpr.13763

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mall NA, Kim HM, Keener JD, et al. Symptomatic progression of asymptomatic rotator cuff tears: a prospective study of clinical and sonographic variables. J Bone Joint Surg Am. 2010; 92(16): 2623-2633.

[2]

Maman E, Harris C, White L, Tomlinson G, Shashank M, Boynton E. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J Bone Joint Surg Am. 2009; 91(8): 1898-1906.

[3]

Moosmayer S, Tariq R, Stiris M, Smith HJ. The natural history of asymptomatic rotator cuff tears: a three-year follow-up of fifty cases. J Bone Joint Surg Am. 2013; 95(14): 1249-1255.

[4]

Chaudhury S, Dines JS, Delos D, Warren RF, Voigt C, Rodeo SA. Role of fatty infiltration in the pathophysiology and outcomes of rotator cuff tears. Arthritis Care Res. 2012; 64(1): 76-82.

[5]

Gladstone JN, Bishop JY, Lo IKY, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007; 35(5): 719-728.

[6]

Ma R, Chow R, Choi L, Diduch D. Arthroscopic rotator cuff repair: suture anchor properties, modes of failure and technical considerations. Expert Rev Med Devices. 2011; 8(3): 377-387.

[7]

Taillandier D. Muscle atrophy: from bench to bedside. Int J Mol Sci. 2023; 24(8):7551.

[8]

Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev. 2023; 103(3): 2057-2170.

[9]

Gransee HM, Mantilla CB, Sieck GC. Respiratory muscle plasticity. Compr Physiol. 2012; 2(2): 1441-1462.

[10]

Gosker HR, van Mameren H, van Dijk PJ, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002; 19(4): 617-625.

[11]

Cretoiu D, Pavelescu L, Duica F, Radu M, Suciu N, Cretoiu SM. Myofibers. Adv Exp Med Biol. 2018; 1088: 23-46.

[12]

Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011; 91(4): 1447-1531.

[13]

Giuliani G, Rosina M, Reggio A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease. FEBS J. 2022; 289(21): 6484-6517.

[14]

Theret M, Rossi FMV, Contreras O. Evolving roles of muscle-resident fibro-Adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front Physiol. 2021; 12: 673404.

[15]

Molina T, Fabre P, Dumont NA. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biol. 2021; 11(12):210110.

[16]

Yamada S, Nomura S. Review of single-cell RNA sequencing in the heart. Int J Mol Sci. 2020; 21(21):8345.

[17]

Lv Z, Han J, Li J, et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine. 2022; 84: 104258.

[18]

Shen Y, Kim IM, Tang Y. Decoding the gene regulatory network of muscle stem cells in mouse Duchenne muscular dystrophy: revelations from single-nuclei RNA sequencing analysis. Int J Mol Sci. 2023; 24(15):12463.

[19]

Amoni M, Vermoortele D, Ekhteraei-Tousi S, et al. Heterogeneity of repolarization and cell-cell variability of cardiomyocyte remodeling within the myocardial infarction border zone contribute to arrhythmia susceptibility. Circ Arrhythm Electrophysiol. 2023; 16(5):e011677.

[20]

Petrany MJ, Swoboda CO, Sun C, et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun. 2020; 11(1): 6374.

[21]

Kim M, Franke V, Brandt B, et al. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun. 2020; 11(1): 6375.

[22]

Stengaard K, Hejbøl EK, Jensen PT, et al. Early-stage inflammation changes in supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg. 2022; 31(7): 1344-1356.

[23]

Hitachi K, Kiyofuji Y, Yamaguchi H, Nakatani M, Inui M, Tsuchida K. Simultaneous loss of skeletal muscle myosin heavy chain IIx and IIb causes severe skeletal muscle hypoplasia in postnatal mice. FASEB J. 2023; 37(1):e22692.

[24]

Lovering RM, Russ DW. Fiber type composition of cadaveric human rotator cuff muscles. J Orthop Sports Phys Ther. 2008; 38(11): 674-680.

[25]

Wang X, Blagden C, Fan J, et al. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 2005; 19(14): 1715-1722.

[26]

Ebert SM, Dyle MC, Kunkel SD, et al. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem. 2012; 287(33): 27290-27301.

[27]

Liu L, Koike H, Ono T, et al. Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A. 2021; 118(35):e2102895118.

[28]

Dasgupta A, Gibbard DF, Schmitt RE, et al. A TGF-β/KLF10 signaling axis regulates atrophy-associated genes to induce muscle wasting in pancreatic cancer. Proc Natl Acad Sci U S A. 2023; 120(34):e2215095120.

[29]

Weis J. Jun, Fos, MyoD1, and myogenin proteins are increased in skeletal muscle fiber nuclei after denervation. Acta Neuropathol. 1994; 87(1): 63-70.

[30]

Mathes S, Fahrner A, Ghoshdastider U, et al. FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci U S A. 2021; 118(37):e2021013118.

[31]

Wosczyna MN, Perez Carbajal EE, Wagner MW, et al. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell. 2021; 28(7): 1323-1334.e8.

[32]

Dammone G, Karaz S, Lukjanenko L, et al. PPARγ controls ectopic adipogenesis and cross-talks with myogenesis during skeletal muscle regeneration. Int J Mol Sci. 2018; 19(7):2044.

[33]

Lin Y, Wen-jie Z, Chang-qing L, Sheng-xiang A, Yue Z. mir-22-3p/KLF6/MMP14 axis in fibro-adipogenic progenitors regulates fatty infiltration in muscle degeneration. FASEB J. 2020; 34(9): 12691-12701.

[34]

Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012; 139(16): 2845-2856.

[35]

Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015; 5(3): 1027-1059.

[36]

Baghdadi MB, Castel D, Machado L, et al. Reciprocal signalling by notch-collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018; 557(7707): 714-718.

[37]

Zhang L, Noguchi YT, Nakayama H, et al. The CalcR-PKA-Yap1 Axis is critical for maintaining quiescence in muscle stem cells. Cell Rep. 2019; 29(8): 2154-2163.

[38]

Baghdadi MB, Firmino J, Soni K, et al. Notch-induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell. 2018; 23(6): 859-868.e5.

[39]

Gioftsidi S, Relaix F, Mourikis P. The notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle. 2022; 12(1): 9.

[40]

Tierney MT, Aydogdu T, Sala D, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med. 2014; 20(10): 1182-1186.

[41]

Guadagnin E, Mázala D, Chen YW. STAT3 in skeletal muscle function and disorders. Int J Mol Sci. 2018; 19(8):2265.

[42]

De Micheli AJ, Laurilliard EJ, Heinke CL, et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 2020; 30(10): 3583-3595.

[43]

Dell'Orso S, Juan AH, Ko KD, et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development. 2019; 146(12):dev174177.

[44]

Fukuda S, Kaneshige A, Kaji T, et al. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. Elife. 2019; 8: 8.

[45]

Roy A, Tomaz da Silva M, Bhat R, Bohnert KR, Iwawaki T, Kumar A. The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism. Elife. 2021; 10: 10.

[46]

Zhang S, Yang F, Huang Y, et al. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun. 2023; 14(1): 4978.

[47]

Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ. 2011; 18(2): 222-234.

[48]

Zhu P, Hamlish NX, Thakkar AV, et al. BMAL1 drives muscle repair through control of hypoxic NAD(+) regeneration in satellite cells. Genes Dev. 2022; 36(3-4): 149-166.

[49]

Zhou S, Zhang W, Cai G, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing tenascin-C during regeneration. Cell Res. 2020; 30(12): 1063-1077.

[50]

Wang YX, Feige P, Brun CE, et al. EGFR-Aurka signaling rescues polarity and regeneration defects in dystrophin-deficient muscle stem cells by increasing asymmetric divisions. Cell Stem Cell. 2019; 24(3): 419-432.e6.

[51]

Lazure F, Blackburn DM, Corchado AH, et al. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep. 2020; 21(12):e49499.

[52]

Tang K, Breen EC, Gerber HP, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004; 18(1): 63-69.

[53]

Winbanks CE, Chen JL, Qian H, et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol. 2013; 203(2): 345-357.

[54]

Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle. 2023; 14(3): 1150-1167.

[55]

Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol. 2023; 24(9): 607-632.

[56]

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013; 280(17): 4294-4314.

[57]

Hong SH, Choi KM. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int J Mol Sci. 2020; 21(2):494.

[58]

Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol. 1997; 139(5): 1231-1242.

[59]

Ishiguro N, Baba T, Ishida T, et al. Carp, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Am J Pathol. 2002; 160(5): 1767-1778.

[60]

Tsukamoto Y, Senda T, Nakano T, et al. Arpp, a new homolog of carp, is preferentially expressed in type 1 skeletal muscle fibers and is markedly induced by denervation. Lab Invest. 2002; 82(5): 645-655.

[61]

Nakamura K, Nakada C, Takeuchi K, et al. Altered expression of cardiac ankyrin repeat protein and its homologue, ankyrin repeat protein with PEST and proline-rich region, in atrophic muscles in amyotrophic lateral sclerosis. Pathobiology. 2002; 70(4): 197-203.

[62]

Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J. 2002; 16(2): 207-209.

[63]

Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL. Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol. 2004; 286(2): C355-C364.

[64]

Joe AW et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010; 12(2): 153-163.

[65]

Heredia JE, Mukundan L, Chen FM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013; 153(2): 376-388.

[66]

Mozzetta C, Consalvi S, Saccone V, et al. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med. 2013; 5(4): 626-639.

[67]

Uezumi A, Fukada SI, Yamamoto N, Takeda S', Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol. 2010; 12(2): 143-152.

[68]

Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci. 2011; 124(Pt 21): 3654-3664.

[69]

Liu X, Ning AY, Chen Chang N, et al. Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J. 2016; 6(1): 6-15.

[70]

Kopinke D, Roberson EC, Reiter JF. Ciliary hedgehog signaling restricts injury-induced adipogenesis. Cell. 2017; 170(2): 340-351.

[71]

Madaro L, Passafaro M, Sala D, et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol. 2018; 20(8): 917-927.

[72]

Lemos DR, Babaeijandaghi F, Low M, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 2015; 21(7): 786-794.

[73]

Serrano AL, Muñoz-Cánoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res. 2010; 316(18): 3050-3058.

[74]

Serrano AL, Muñoz-Cánoves P. Fibrosis development in early-onset muscular dystrophies: mechanisms and translational implications. Semin Cell Dev Biol. 2017; 64: 181-190.

[75]

DiMario JX. KLF10 gene expression modulates fibrosis in dystrophic skeletal muscle. Am J Pathol. 2018; 188(5): 1263-1275.

[76]

Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle. 2022; 13(1): 713-727.

[77]

Wijaya YT, Setiawan T, Sari IN, et al. Ginsenoside Rd ameliorates muscle wasting by suppressing the signal transducer and activator of transcription 3 pathway. J Cachexia Sarcopenia Muscle. 2022; 13(6): 3149-3162.

[78]

Lin H, Ma X, Sun Y, et al. Decoding the transcriptome of denervated muscle at single-nucleus resolution. J Cachexia Sarcopenia Muscle. 2022; 13(4): 2102-2117.

[79]

Chen M, Xiao L, Dai G, et al. Inhibition of JAK-STAT signaling pathway alleviates age-related phenotypes in tendon stem/progenitor cells. Front Cell Dev Biol. 2021; 9: 650250.

[80]

Dos Santos M, Shah AM, Zhang Y, et al. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun. 2023; 14(1): 4333.

[81]

Joshi S, Davidson G, le Gras S, et al. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLoS Genet. 2017; 13(2):e1006600.

[82]

Almada AE, Horwitz N, Price FD, et al. FOS licenses early events in stem cell activation driving skeletal muscle regeneration. Cell Rep. 2021; 34(4):108656.

[83]

Lee KY, Singh MK, Ussar S, et al. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun. 2015; 6: 8054.

[84]

Song MY, Han CY, Moon YJ, Lee JH, Bae EJ, Park BH. Sirt6 reprograms myofibers to oxidative type through CREB-dependent Sox6 suppression. Nat Commun. 2022; 13(1): 1808.

[85]

Gomez-Cabrera MC, Arc-Chagnaud C, Salvador-Pascual A, et al. Redox modulation of muscle mass and function. Redox Biol. 2020; 35: 101531.

[86]

Xirouchaki CE, Jia Y, McGrath MJ, et al. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Sci Adv. 2021; 7(51):eabl4988.

[87]

Bogunovic L, Lee SX, Haro MS, et al. Application of the Goutallier/Fuchs rotator cuff classification to the evaluation of hip abductor tendon tears and the clinical correlation with outcome after repair. Art Ther. 2015; 31(11): 2145-2151.

[88]

Ruderman L, Leinroth A, Rueckert H, et al. Histologic differences in human rotator cuff muscle based on tear characteristics. J Bone Joint Surg Am. 2022; 104(13): 1148-1156.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/