Nuclear receptor Rev-erbα alleviates intervertebral disc degeneration by recruiting NCoR–HDAC3 co-repressor and inhibiting NLRP3 inflammasome
Qingshuang Zhou , Xiaojiang Pu , Zhuang Qian , Haojie Chen , Nannan Wang , Sinian Wang , Zhenhua Feng , Zezhang Zhu , Bin Wang , Yong Qiu , Xu Sun
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (12) : e13720
Nuclear receptor Rev-erbα alleviates intervertebral disc degeneration by recruiting NCoR–HDAC3 co-repressor and inhibiting NLRP3 inflammasome
Intervertebral discs (IVDs) are rhythmic tissues that experience daily low-load recovery. Notably, aging and abnormal mechanical stress predispose IVDs to degeneration due to dysrhythmia-induced disordered metabolism. Meanwhile, Rev-erbα acts as a transcriptional repressor in maintaining biorhythms and homeostasis; however, its function in IVD homeostasis and degeneration remains unclear. This study assessed the relationship between low Rev-erbα expression levels and IVD degeneration. Rev-erbα deficiency accelerated needle puncture or aging-induced IVD degeneration, characterized by increased extracellular matrix (ECM) catabolism and nucleus pulposus (NP) cell apoptosis. Mechanistically, Rev-erbα knockdown in NP cells aggravated rhIL1β-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, exacerbating the imbalanced ECM and NP cell apoptosis. Meanwhile, blocking NLRP3 inflammasome activation mitigated Rev-erbα deficiency and needle puncture-induced IVD degeneration. Particularly, Rev-erbα mediated the transcriptional repression of the NLRP3 inflammasome via the ligand heme-binding of nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3) complex. Thus, the increased expression of Rev-erbα in NP cells following short-term rhIL1β treatment failed to inhibit NLRP3 transcription in vitro owing to heme depletion. Pharmacological activation of Rev-erbα in vivo and in vitro alleviated IVD degeneration by altering the NLRP3 inflammasome. Taken together, targeting Rev-erbα may be a potential therapeutic strategy for alleviating IVD degeneration and its related diseases.
2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
/
| 〈 |
|
〉 |