Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation

Zhili Xin , Rongyao Xu , Yangjiele Dong , Shenghao Jin , Xiao Ge , Xin Shen , Songsong Guo , Yu Fu , Ping Zhang , Hongbing Jiang

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (12) : e13714

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (12) : e13714 DOI: 10.1111/cpr.13714
ORIGINAL ARTICLE

Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation

Author information +
History +
PDF

Abstract

Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages. Our study reveals the crucial roles of SIRT6 in regulating macrophage autophagy and polarization through the PI3K/AKT/mTOR pathway, as demonstrated by generating two conditional knock out mice. Furthermore, triptolide (TP) effectively rejuvenates macrophage autophagy and polarization via targeting this pathway. We also design a local delivery of TP-loaded apoptotic extracellular vesicles (ApoEVs) to improve age-related SGs dysfunction therapeutically. Collectively, our findings uncover a previously unknown link between SIRT6-regulated autophagy and macrophage polarization in age-mediated hyposalivation, while our locally therapeutic strategy exhibits potential preventive effects for age-related hyposalivation.

Cite this article

Download citation ▾
Zhili Xin, Rongyao Xu, Yangjiele Dong, Shenghao Jin, Xiao Ge, Xin Shen, Songsong Guo, Yu Fu, Ping Zhang, Hongbing Jiang. Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation. Cell Proliferation, 2024, 57(12): e13714 DOI:10.1111/cpr.13714

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MillsopJW, WangEA, FazelN. Etiology, evaluation, and management of xerostomia. Clin Dermatol. 2017; 35(5):468-476.

[2]

XuF, LagunaL, SarkarA. Aging-related changes in quantity and quality of saliva: where do we stand in our understanding? J Texture Stud. 2019; 50(1):27-35.

[3]

OsterbergT, Birkhed D, JohanssonC, SvanborgA. Longitudinal study of stimulated whole saliva in an elderly population. Scand J Dent Res. 1992; 100(6):340-345.

[4]

ScottJ. Quantitative age changes in the histological structure of human submandibular salivary glands. Arch Oral Biol. 1977; 22(3):221-227.

[5]

WatiSM, Matsumaru D, MotohashiH. NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biol. 2020; 36:101603.

[6]

MaY, MoutonAJ, LindseyML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res. 2018; 191:15-28.

[7]

ShawAC, Goldstein DR, MontgomeryRR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013; 13(12):875-887.

[8]

MinhasPS, LiuL, MoonPK, et al. Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat Immunol. 2019; 20(1):50-63.

[9]

XuR, XieH, ShenX, et al. Impaired efferocytosis enables apoptotic osteoblasts to escape osteoimmune surveillance during aging. Adv Sci (Weinh). 2023; 10(36):e2303946.

[10]

LiB, XinZ, GaoS, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis. Theranostics. 2023; 13(1):231-249.

[11]

GlickD, BarthS, MacleodKF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221(1):3-12.

[12]

Morgan-BathkeM, LinHH, ChiblyAM, et al. Deletion of ATG5 shows a role of autophagy in salivary homeostatic control. J Dent Res. 2013; 92(10):911-917.

[13]

Morgan-BathkeM, LinHH, AnnDK, Limesand KH. The role of autophagy in salivary gland homeostasis and stress responses. J Dent Res. 2015; 94(8):1035-1040.

[14]

LiuT, WangL, LiangP, et al. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol. 2021; 18(10):2431-2442.

[15]

SimonsenA, Cumming RC, BrechA, IsaksonP, Schubert DR, FinleyKD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy. 2008; 4(2):176-184.

[16]

Martinez-MadrigalF, Micheau C. Histology of the major salivary glands. Am J Surg Pathol. 1989; 13(10):879-899.

[17]

HosoiK, YaoC, HasegawaT, Yoshimura H, AkamatsuT. Dynamics of salivary gland AQP5 under normal and pathologic conditions. Int J Mol Sci. 2020; 21(4):1182.

[18]

van de LaarL, Saelens W, De PrijckS, et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity. 2016; 44(4):755-768.

[19]

LuL, Kuroishi T, TanakaY, FurukawaM, NochiT, SugawaraS. Differential expression of CD11c defines two types of tissue-resident macrophages with different origins in steady-state salivary glands. Sci Rep. 2022; 12(1):931.

[20]

ZhaoQ, PanS, ZhangL, et al. A salivary gland resident macrophage subset regulating radiation responses. J Dent Res. 2023; 102(5):536-545.

[21]

WangL, GuoW, MaJ, et al. Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling. Autophagy. 2018; 14(3):518-533.

[22]

ZhaoL, LanZX, PengL, et al. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif. 2022; 55(9):e13278.

[23]

LiXY, WangSS, HanZ, et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucl Acids. 2017; 9:48-56.

[24]

WangJ, CaoZ, WangP, et al. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring Fas-mediated apoptosis. ACS Nano. 2021; 15(9):14360-14372.

[25]

VissinkA, Spijkervet FK, Van NieuwAA. Aging and saliva: a review of the literature. Spec Care Dentist. 1996; 16(3):95-103.

[26]

ScottJ, FlowerEA, BurnsJ. A quantitative study of histological changes in the human parotid gland occurring with adult age. J Oral Pathol. 1987; 16(10):505-510.

[27]

ChangWI, ChangJY, KimYY, Lee G, KhoHS. MUC1 expression in the oral mucosal epithelial cells of the elderly. Arch Oral Biol. 2011; 56(9):885-890.

[28]

GordonS, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32(5):593-604.

[29]

DimitrijevićM, Stanojević S, BlagojevićV, et al. Aging affects the responsiveness of rat peritoneal macrophages to GM-CSF and IL-4. Biogerontology. 2016; 17(2):359-371.

[30]

LeeDC, RuizCR, LebsonL, et al. Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging. 2013; 34(6):1610-1620.

[31]

LujambioA, AkkariL, SimonJ, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013; 153(2):449-460.

[32]

Shapouri-MoghaddamA, Mohammadian S, VaziniH, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018; 233(9):6425-6440.

[33]

GluschkoA, HerbM, WiegmannK, et al. The beta(2) integrin mac-1 induces protective LC3-associated phagocytosis of listeria monocytogenes. Cell Host Microbe. 2018; 23(3):324-337 e325.

[34]

ChenX, WanZ, YangL, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J Nanobiotechnol. 2022; 20(1):110.

[35]

MantovaniA, BiswasSK, GaldieroMR, Sica A, LocatiM. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013; 229(2):176-185.

[36]

YangZ, HuangR, WeiX, YuW, MinZ, YeM. The SIRT6-autophagy-Warburg effect axis in papillary thyroid cancer. Front Oncol. 2020; 10:1265.

[37]

SongMY, KimSH, RyooGH, et al. Adipose sirtuin 6 drives macrophage polarization toward M2 through IL-4 production and maintains systemic insulin sensitivity in mice and humans. Exp Mol Med. 2019; 51(5):1-10.

[38]

RubinszteinDC, MarinoG, KroemerG. Autophagy and aging. Cell. 2011; 146(5):682-695.

[39]

GuoYY, LinC, XuP, et al. AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes. Sci Rep. 2016; 6:6.

[40]

LuoJ, WangJ, ZhangJ, et al. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy- and NF-κB/PPARγ-mediated macrophage polarization. Cells. 2022; 11(23):3927.

[41]

TakasakaN, ArayaJ, HaraH, et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol. 2014; 192(3):958-968.

[42]

ZhuN, RuanJ, YangX, et al. Triptolide improves spinal cord injury by promoting autophagy and inhibiting apoptosis. Cell Biol Int. 2020; 44(3):785-794.

[43]

ZhengZ, YanG, XiN, et al. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR pathway. Anticancer Agents Med Chem. 2023; 23(13):1596-1604.

[44]

LaiK, GongY, ZhaoW, et al. Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother. 2020; 129:110312.

[45]

WanL, LiuJ, HuangC, Wang K, ZhuZ, LiF. A novel pharmaceutical preparation of Tripterygium wilfordii Hook. f. regulates macrophage polarization to alleviate inflammation in rheumatoid arthritis. J Pharm Pharmacol. 2023; 75(11):1442-1457.

[46]

EdgarJR. Q&A: what are exosomes, exactly? BMC Biol. 2016; 14:46.

[47]

Alvarez-ErvitiL, SeowY, YinH, BettsC, LakhalS, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29(4):341-345.

[48]

KakarlaR, HurJ, KimYJ, Kim J, ChwaeYJ. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med. 2020; 52(1):1-6.

[49]

Gomez PerdigueroE, Klapproth K, SchulzC, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015; 518(7540):547-551.

[50]

van FurthR, CohnZA, HirschJG, Humphrey JH, SpectorWG, LangevoortHL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972; 46(6):845-852.

[51]

NavazeshM. Methods for collecting saliva. Ann N Y Acad Sci. 1993; 694:72-77.

[52]

ShimazakiY, FuB, YonemotoK, et al. Stimulated salivary flow rate and oral health status. J Oral Sci. 2017; 59(1):55-62.

[53]

LinX, SongJX, ShawPC, et al. An autoimmunized mouse model recapitulates key features in the pathogenesis of Sjogren’s syndrome. Int Immunol. 2011; 23(10):613-624.

[54]

DragovicRA, Gardiner C, BrooksAS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011; 7(6):780-788.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/