Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries

Yutong Yan , Hui Zhang , Rui Xu , Linglin Luo , Lu Yin , Hao Wu , Yiqian Zhang , Chan Li , Sihai Lu , Yaju Tang , Xiaoe Zhao , Menghao Pan , Qiang Wei , Sha Peng , Baohua Ma

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13713

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13713 DOI: 10.1111/cpr.13713
ORIGINAL ARTICLE

Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries

Author information +
History +
PDF

Abstract

Estrogen has been implicated in multiple biological processes, but the variation underlying estrogen-mediated primordial follicle (PF) formation remains unclear. Here, we show that 17β-estradiol (E2) treatment of neonatal mice led to the inhibition of PF formation and cell proliferation. Single-cell RNA sequencing (scRNA-seq) revealed that E2 treatment caused significant changes in the transcriptome of oocytes and somatic cells. E2 treatment disrupted the synchronised development of oocytes, pre-granulosa (PG) cells and stromal cells. Mechanistically, E2 treatment disrupted several signalling pathways critical to PF formation, especially down-regulating the Kitl and Smad1/3/4/5/7 expression, reducing the frequency and number of cell communication. In addition, E2 treatment influenced key gene expression, mitochondrial function of oocytes, the recruitment and maintenance of PG cells, the cell proliferation of somatic cells, as well as disordered the ovarian microenvironment. This study not only revealed insights into the regulatory role of estrogen during PF formation, but also filled in knowledge of dramatic changes in perinatal hormones, which are critical for the physiological significance of understanding hormone changes and reproductive protection.

Cite this article

Download citation ▾
Yutong Yan, Hui Zhang, Rui Xu, Linglin Luo, Lu Yin, Hao Wu, Yiqian Zhang, Chan Li, Sihai Lu, Yaju Tang, Xiaoe Zhao, Menghao Pan, Qiang Wei, Sha Peng, Baohua Ma. Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries. Cell Proliferation, 2024, 57(9): e13713 DOI:10.1111/cpr.13713

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangH, LiuL, LiX, et al. Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. Proc Natl Acad Sci U S A. 2014; 111(50):17983-17988.

[2]

ZhangH, PanulaS, PetropoulosS, et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med. 2015; 21(10):1116-1118.

[3]

GriveKJ, Freiman RN. The developmental origins of the mammalian ovarian reserve. Development. 2015; 142(15):2554-2563.

[4]

FengL, WangY, CaiH, et al. ADAM10-notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci. 2016; 129(11):2202-2212.

[5]

PeplingME. Follicular assembly: mechanisms of action. Reproduction. 2012; 143(2):139-149.

[6]

PeplingME, Sundman EA, PattersonNL, GephardtGW, MedicoL Jr, WilsonKI. Differences in oocyte development and estradiol sensitivity among mouse strains. Reproduction. 2010; 139(2):349-357.

[7]

WangZP, MuXY, GuoM, et al. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem. 2014; 289(12):8299-8311.

[8]

LeiL, JinS, MayoKE, Woodruff TK. The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis. Biol Reprod. 2010; 82(1):13-22.

[9]

LeiL, ZhangH, JinS, et al. Stage-specific germ-somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol. 2006; 208(3):640-647.

[10]

ZhuZ, QinS, ZhangT, et al. Pregranulosa cell-derived FGF23 protects oocytes from premature apoptosis during primordial follicle formation by inhibiting p38 MAPK in mice. J Biol Chem. 2023; 299(6):104776.

[11]

PeplingME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol. 2001; 234(2):339-351.

[12]

SchmidtD, OvittCE, AnlagK, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004; 131(4):933-942.

[13]

NiuW, Spradling AC. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A. 2020; 117(33):20015-20026.

[14]

ZhengW, ZhangH, GorreN, Risal S, ShenY, LiuK. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet. 2014; 23(4):920-928.

[15]

UhlenhautNH, JakobS, AnlagK, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009; 139(6):1130-1142.

[16]

OttolenghiC, OmariS, Garcia-OrtizJE, et al. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet. 2005; 14(14):2053-2062.

[17]

MorkL, Maatouk DM, McMahonJA, et al. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod. 2012; 86(2):37.

[18]

RastetterRH, Bernard P, PalmerJS, et al. Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol. 2014; 394(2):242-252.

[19]

JiaL, WangW, LiangJ, et al. Analyzing the cellular and molecular atlas of ovarian mesenchymal cells provides a strategy against female reproductive aging. Sci China Life Sci. 2023; 66:2818-2836.

[20]

KinnearHM, Tomaszewski CE, ChangFL, et al. The ovarian stroma as a new frontier. Reproduction. 2020; 160(3):R25-R39.

[21]

FanX, Bialecka M, MoustakasI, et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun. 2019; 10(1):3164.

[22]

WagnerM, Yoshihara M, DouagiI, et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun. 2020; 11(1):1147.

[23]

WangS, ZhengY, LiJ, et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell. 2020; 180(3):585-600.e519.

[24]

TelferEE, Grosbois J, OdeyYL, RosarioR, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023; 103(4):2623-2677.

[25]

TingenC, KimA, WoodruffTK. The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol Hum Reprod. 2009; 15(12):795-803.

[26]

WangC, ZhouB, XiaG. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci. 2017; 74(14):2547-2566.

[27]

MahboobifardF, Pourgholami MH, JorjaniM, et al. Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother. 2022; 156:113808.

[28]

DuttaS, Mark-Kappeler CJ, HoyerPB, PeplingME. The steroid hormone environment during primordial follicle formation in perinatal mouse ovaries. Biol Reprod. 2014; 91(3):68.

[29]

ChenY, BreenK, PeplingME. Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol. 2009; 202(3):407-417.

[30]

YangMY, Fortune JE. The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes. Biol Reprod. 2008; 78(6):1153-1161.

[31]

WangC, RoySK. Development of primordial follicles in the hamster: role of estradiol-17beta. Endocrinology. 2007; 148(4):1707-1716.

[32]

KippJL, KilenSM, Bristol-GouldS, WoodruffTK, MayoKE. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology. 2007; 148(5):1968-1976.

[33]

ChenY, Jefferson WN, NewboldRR, Padilla-BanksE, Pepling ME. Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology. 2007; 148(8):3580-3590.

[34]

BrittKL, Saunders PK, McPhersonSJ, MissoML, Simpson ER, FindlayJK. Estrogen actions on follicle formation and early follicle development. Biol Reprod. 2004; 71(5):1712-1723.

[35]

PepeGJ, Billiar RB, AlbrechtED. Regulation of baboon fetal ovarian folliculogenesis by estrogen. Mol Cell Endocrinol. 2006; 247(1–2):41-46.

[36]

WuCH, Mennuti MT, MikhailG. Free and protein-bound steroids in amniotic fluid of midpregnancy. Am J Obstet Gynecol. 1979; 133(6):666-672.

[37]

IguchiT, Fukazawa Y, UesugiY, TakasugiN. Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro. Biol Reprod. 1990; 43(3):478-484.

[38]

JeffersonWN, CouseJF, Padilla-BanksE, KorachKS, Newbold RR. Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions. Biol Reprod. 2002; 67(4):1285-1296.

[39]

SchombergDW, CouseJF, MukherjeeA, et al. Targeted disruption of the estrogen receptor-alpha gene in female mice: characterization of ovarian responses and phenotype in the adult. Endocrinology. 1999; 140(6):2733-2744.

[40]

ChengG, WeihuaZ, MäkinenS, et al. A role for the androgen receptor in follicular atresia of estrogen receptor beta knockout mouse ovary. Biol Reprod. 2002; 66(1):77-84.

[41]

DupontS, KrustA, GansmullerA, Dierich A, ChambonP, MarkM. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development. 2000; 127(19):4277-4291.

[42]

ZhangH, LiuK. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update. 2015; 21(6):779-786.

[43]

StévantI, NefS. Genetic control of gonadal sex determination and development. Trends Genet. 2019; 35(5):346-358.

[44]

StévantI, Kühne F, GreenfieldA, ChaboissierMC, Dermitzakis ET, NefS. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics. Cell Rep. 2019; 26(12):3272-3283.e3273.

[45]

WangJJ, GeW, ZhaiQY, et al. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol. 2020; 18(12):e3001025.

[46]

WangJJ, TianY, LiMH, et al. Single-cell transcriptome dissection of the toxic impact of di(2-ethylhexyl)phthalate on primordial follicle assembly. Theranostics. 2021; 11(10):4992-5009.

[47]

TianY, ZhangMY, ZhaoAH, et al. Single-cell transcriptomic profiling provides insights into the toxic effects of zearalenone exposure on primordial follicle assembly. Theranostics. 2021; 11(11):5197-5213.

[48]

ZhuD, WuX, ZhouJ, et al. NuRD mediates mitochondrial stress-induced longevity via chromatin remodeling in response to acetyl-CoA level. Sci Adv. 2020; 6(31):eabb2529.

[49]

JonesRL, Pepling ME. KIT signaling regulates primordial follicle formation in the neonatal mouse ovary. Dev Biol. 2013; 382(1):186-197.

[50]

GuilletteLJ Jr, MooreBC. Environmental contaminants, fertility, and multioocytic follicles: a lesson from wildlife? Semin Reprod Med. 2006; 24(3):134-141.

[51]

FengYQ, WangJJ, LiMH, et al. Impaired primordial follicle assembly in offspring ovaries from zearalenone-exposed mothers involves reduced mitochondrial activity and altered epigenetics in oocytes. Cell Mol Life Sci. 2022; 79(5):258.

[52]

KongL, ZhaoAH, WangQW, et al. Maternal zearalenone exposure impacted ovarian follicle formation and development of suckled offspring. Sci Total Environ. 2021; 788:147792.

[53]

WangJJ, ZhangXY, ZengY, et al. Melatonin alleviates the toxic effect of di(2-ethylhexyl)phthalate on oocyte quality resulting from CEBPB suppression during primordial follicle formation. J Hazard Mater. 2023; 465:132997.

[54]

SoyalSM, AmlehA, DeanJ. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000; 127(21):4645-4654.

[55]

PangasSA, ChoiY, BallowDJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A. 2006; 103(21):8090-8095.

[56]

ShimamotoS, Nishimura Y, NagamatsuG, et al. Hypoxia induces the dormant state in oocytes through expression of Foxo3. Proc Natl Acad Sci U S A. 2019; 116(25):12321-12326.

[57]

WangZ, LiuCY, ZhaoY, Dean J. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res. 2020; 48(7):3525-3541.

[58]

IrwinRW, YaoJ, ToJ, Hamilton RT, CadenasE, BrintonRD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol. 2012; 24(1):236-248.

[59]

NilsenJ, IrwinRW, GallaherTK, Brinton RD. Estradiol in vivo regulation of brain mitochondrial proteome. J Neurosci. 2007; 27(51):14069-14077.

[60]

AitkenRJ. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction. 2020; 159(4):R189-R201.

[61]

Rodríguez-NuevoA, Torres-SanchezA, DuranJM, De GuiriorC, Martínez-Zamora MA, BökeE. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature. 2022; 607(7920):756-761.

[62]

ZhangX, ZhangW, WangZ, et al. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022; 13(1):87.

[63]

GaubMP, Bellard M, ScheuerI, ChambonP, Sassone-Corsi P. Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell. 1990; 63(6):1267-1276.

[64]

ToraL, GaubMP, MaderS, Dierich A, BellardM, ChambonP. Cell-specific activity of a GGTCA half-palindromic oestrogen-responsive element in the chicken ovalbumin gene promoter. EMBO J. 1988; 7(12):3771-3778.

[65]

DeshpandeRR, ChangMY, ChapmanJC, Michael SD. Alteration of cytokine production in follicular cystic ovaries induced in mice by neonatal estradiol injection. Am J Reprod Immunol. 2000; 44(2):80-88.

[66]

IguchiT, Takasugi N, BernHA, MillsKT. Frequent occurrence of polyovular follicles in ovaries of mice exposed neonatally to diethylstilbestrol. Teratology. 1986; 34(1):29-35.

[67]

UdaM, Ottolenghi C, CrisponiL, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet. 2004; 13(11):1171-1181.

[68]

GengQ, NiLW, OuyangB, Hu YH, ZhaoY, GuoJ. Alanine and arginine rich domain containing protein, Aard, is directly regulated by androgen receptor in mouse Sertoli cells. Mol Med Rep. 2017; 15(1):352-358.

[69]

FujinoA, Pieretti-Vanmarcke R, WongA, DonahoePK, ArangoNA. Sexual dimorphism of G-protein subunit Gng13 expression in the cortical region of the developing mouse ovary. Dev Dyn. 2007; 236(7):1991-1996.

[70]

MinkinaA, MatsonCK, LindemanRE, Ghyselinck NB, BardwellVJ, ZarkowerD. DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014; 29(5):511-520.

[71]

ZhouJ, JiangX, WuH, et al. Dissecting the fate of Foxl2-expressing cells in fetal ovary using lineage tracing and single-cell transcriptomics. Cell Discov. 2022; 8(1):139.

[72]

UmeharaT, Winstanley YE, AndreasE, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv. 2022; 8(24):eabn4564.

[73]

ZalewskiA, Cecchini EL, DerooBJ. Expression of extracellular matrix components is disrupted in the immature and adult estrogen receptor β-null mouse ovary. PLoS One. 2012; 7(1):e29937.

[74]

SongY, WeiJ, LiR, et al. Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling. Hepatology. 2023; 78:1433-1447.

[75]

SchmiererB, HillCS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007; 8(12):970-982.

[76]

RoskoskiR Jr. Structure and regulation of kit protein-tyrosine kinase—the stem cell factor receptor. Biochem Biophys Res Commun. 2005; 338(3):1307-1315.

[77]

BurtonJJN, LukeAJ, PeplingME. Regulation of mouse primordial follicle formation by signaling through the PI3K pathway. Biol Reprod. 2022; 106(3):515-525.

[78]

ManovaK, HuangEJ, AngelesM, et al. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev Biol. 1993; 157(1):85-99.

[79]

PackerAI, HsuYC, BesmerP, Bachvarova RF. The ligand of the c-kit receptor promotes oocyte growth. Dev Biol. 1994; 161(1):194-205.

[80]

HughesCHK, SmithOE, MeinsohnMC, Brunelle M, GévryN, MurphyBD. Steroidogenic factor 1 (SF-1; Nr5a1) regulates the formation of the ovarian reserve. Proc Natl Acad Sci U S A. 2023; 120(32):e2220849120.

[81]

NiuW, WangY, WangZ, et al. JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice. Development. 2016; 143(10):1778-1787.

[82]

WangY, TengZ, LiG, et al. Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Development. 2015; 142(2):343-351.

[83]

SubramanianA, TamayoP, MoothaVK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-15550.

[84]

QiuX, MaoQ, TangY, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10):979-982.

[85]

BergenV, LangeM, PeidliS, Wolf FA, TheisFJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38(12):1408-1414.

[86]

AibarS, González-Blas CB, MoermanT, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017; 14(11):1083-1086.

[87]

MacoskoEZ, BasuA, SatijaR, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202-1214.

[88]

JinS, Guerrero-Juarez CF, ZhangL, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021; 12(1):1088.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/