Impact of CD151 overexpression on prognosis and therapy in non-small cell lung cancer patients lacking EGFR mutations

Amanda Huee-Ping Wong , Min En Nga , Chin Yein Chin , Yee Kit Tai , Hung Chew Wong , Ross Soo , Omer An , Henry Yang , Ju Ee Seet , Yaw Chyn Lim , John Kit Chung Tam , Thai Tran

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13708

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13708 DOI: 10.1111/cpr.13708
ORIGINAL ARTICLE

Impact of CD151 overexpression on prognosis and therapy in non-small cell lung cancer patients lacking EGFR mutations

Author information +
History +
PDF

Abstract

This study investigates CD151, a protein linked to cancer progression, in non-small cell lung cancer (NSCLC) patients without epidermal growth factor receptor (EGFR) mutations. These patients often have limited treatment options. The study used retrospective analysis to examine 157 adenocarcinoma biopsy specimens and 199 patient cases from The Cancer Genome Atlas, correlating CD151 expression with patient survival. Cellular studies revealed that CD151 interacts with EGFR, influencing epidermal growth factor (EGF)-induced cell proliferation and the effectiveness of the EGFR inhibitor, erlotinib. A strong association was found between CD151 expression and EGFR mutation status. High CD151 expression in the absence of EGFR mutations is correlated with poorer survival outcomes. Biological assays showed that CD151 colocalizes and associates with EGFR, playing a crucial role in regulating EGF-induced cell proliferation via the AKT and ERK1/2 pathways. Importantly, CD151 expression was found to influence the anti-proliferative effects of the EGFR tyrosine kinase inhibitor, erlotinib. High CD151 expression, in the absence of EGFR mutations, was associated with poorer survival outcomes. It could serve as a potential prognostic marker and influence cellular responses to EGFR-targeted treatments. This study highlights CD151 as a potential novel target for therapeutic intervention in NSCLC, especially in populations lacking EGFR mutations.

Cite this article

Download citation ▾
Amanda Huee-Ping Wong, Min En Nga, Chin Yein Chin, Yee Kit Tai, Hung Chew Wong, Ross Soo, Omer An, Henry Yang, Ju Ee Seet, Yaw Chyn Lim, John Kit Chung Tam, Thai Tran. Impact of CD151 overexpression on prognosis and therapy in non-small cell lung cancer patients lacking EGFR mutations. Cell Proliferation, 2024, 57(9): e13708 DOI:10.1111/cpr.13708

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WaltersS, Maringe C, ColemanMP, et al. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004-2007. Thorax. 2013; 68(6):551-564.

[2]

SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3):209-249.

[3]

TravisWD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med. 2011; 32(1):22-31.

[4]

JacobsenMM, Silverstein SC, QuinnM, et al. Timeliness of access to lung cancer diagnosis and treatment: a scoping literature review. Lung Cancer. 2017; 112:156-164.

[5]

AlexanderM, KimSY, ChengH. Update 2020: management of non-small cell lung cancer. Lung. 2020; 198(6):897-907.

[6]

ArbourKC, RielyGJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. Jama. 2019; 322(8):764-774.

[7]

KangY, JinY, LiQ, YuanX. Advances in lung cancer driver genes associated with brain metastasis. Front Oncol. 2020; 10:606300.

[8]

EttingerDS, WoodDE, AisnerDL, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Cancer Netw. 2021; 19(3):254-266. doi:10.6004/jnccn.2021.0013

[9]

HerbstRS, BunnPA. Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res. 2003; 9(16 pt 1):5813-5824.

[10]

RosellR, Carcereny E, GervaisR, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012; 13(3):239-246. doi:10.1016/S1470-2045(11)70393-X

[11]

MokTS, WuYL, ThongprasertS, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009; 361(10):947-957.

[12]

GrahamRP, TreeceAL, LindemanNI, et al. Worldwide frequency of commonly detected EGFR mutations. Arch Pathol Lab Med. 2018; 142(2):163-167.

[13]

WerutskyG, Debiasi M, SampaioFH, et al. P1.08: updated analysis of global epidemiology of EGFR mutation in advanced non-small cell lung cancer: track: prevention, early detection, epidemiology and tobacco control. J Thorac Oncol. 2016; 11(10):S184-S185.

[14]

ZhangT, WanB, ZhaoY, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl Lung Cancer Res. 2019; 8(3):302-316.

[15]

TomasiniP, Brosseau S, MazièresJ, et al. EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR wild-type pre-treated advanced nonsmall cell lung cancer in daily practice. Eur Respir J. 2017; 50(2):1700514.

[16]

BarJ, PeledN, SchokrpurS, et al. UNcommon EGFR mutations: International case series on efficacy of Osimertinib in Real-life practice in first-LiNe setting (UNICORN). J Thorac Oncol. 2023; 18(2):169-180.

[17]

ZhouF, ZhouC-C. Targeted therapies for patients with advanced NSCLC harboring wild-type EGFR: what’s new and what’s enough. Chin J Cancer. 2015; 34(3):31-319.

[18]

YangXH, Richardson AL, Torres-ArzayusMI, et al. CD151 accelerates breast cancer by regulating α(6) integrin function, signaling, and molecular organization. Cancer Res. 2008; 68(9):3204-3213.

[19]

WongAH, TranT. CD151 in respiratory diseases. Front Cell Dev Biol. 2020; 8:64.

[20]

HemlerME. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 2014; 14(1):49-60.

[21]

SadejR, Grudowska A, TurczykL, KordekR, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. Lab Invest. 2014; 94(1):41-51.

[22]

AngJ, Lijovic M, AshmanLK, KanK, Frauman AG. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev. 2004; 13(11 pt 1):1717-1721.

[23]

KeAW, ShiGM, ZhouJ, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 2009; 49(2):491-503.

[24]

SincockPM, Mayrhofer G, AshmanLK. Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem. 1997; 45(4):515-525.

[25]

KwonMJ, SeoJ, KimYJ, et al. Prognostic significance of CD151 overexpression in non-small cell lung cancer. Lung Cancer. 2013; 81(1):109-116.

[26]

TokuharaT, Hasegawa H, HattoriN, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res. 2001; 7(12):4109-4114.

[27]

DasK, OmarMFM, OngCW, et al. TRARESA: a tissue microarray-based hospital system for biomarker validation and discovery. Pathology. 2008; 40(5):441-449.

[28]

LeeD, SuhYL, ParkTI, et al. Prognostic significance of tetraspanin CD151 in newly diagnosed glioblastomas. J Surg Oncol. 2012; 107(6):646-652.

[29]

OmarMF, ItoK, NgaME, et al. RUNX3 downregulation in human lung adenocarcinoma is independent of p53, EGFR or KRAS status. Pathol Oncol Res. 2012; 18(4):783-792.

[30]

TranT, TeohCM, TamJKC, et al. Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB J. 2013; 27(10):3991-4003.

[31]

TranT, Stewart AG. Protease-activated receptor (PAR)-independent growth and pro-inflammatory actions of thrombin on human cultured airway smooth muscle. Br J Pharmacol. 2003; 138(5):865-875.

[32]

QiaoY, TamJKC, TanSSL, et al. CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol. 2017; 139(1):82-92.e5.

[33]

HangQ, IsajiT, HouS, ZhouY, FukudaT, Gu J. N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4. Sci Rep. 2016; 6(1):33507.

[34]

TerminiCM, Gillette JM. Tetraspanins function as regulators of cellular signaling. Front Cell Dev Biol. 2017; 5:34.

[35]

ZhuJ, CaiT, ZhouJ, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021; 40(1):192.

[36]

RomanskaHM, Potemski P, CollinsSI, WilliamsH, ParmarS, BerditchevskiF. Loss of CD151/Tspan24 from the complex with integrin alpha3beta1 in invasive front of the tumour is a negative predictor of disease-free survival in oral squamous cell carcinoma. Oral Oncol. 2013; 49(3):224-229.

[37]

KwonMJ, ParkS, ChoiJY, et al. Clinical significance of CD151 overexpression in subtypes of invasive breast cancer. Br J Cancer. 2012; 106(5):923-930.

[38]

te MolderL, JuksarJ, HarkesR, Wang W, KreftM, SonnenbergA. Tetraspanin CD151 and integrin α3β1 contribute to the stabilization of integrin α6β4-containing cell-matrix adhesions. J Cell Sci. 2019; 132(19):1-15.

[39]

YauchRL, Kazarov AR, DesaiB, LeeRT, HemlerME. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem. 2000; 275(13):9230-9238.

[40]

Yanez-MoM, Alfranca A, CabañasC, et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol. 1998; 141(3):791-804.

[41]

YauchRL, HemlerME. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase. Biochem J. 2000; 351(pt 3):629-637.

[42]

LiQ, YangXH, XuF, et al. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene. 2013; 32(14):1772-1783.

[43]

ZhouP, ErfaniS, LiuZ, et al. CD151-alpha3beta1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget. 2015; 6(30):29675-29693.

[44]

FrancoM, Muratori C, CorsoS, et al. The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J Biol Chem. 2010; 285(50):38756-38764.

[45]

SadejR, Romanska H, BaldwinG, et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res. 2009; 7(6):787-798.

[46]

DengX, LiQ, HoffJ, et al. Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia. 2012; 14(8):678-689.

[47]

TakedaY, Kazarov AR, ButterfieldCE, et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood. 2007; 109(4):1524.

[48]

JaziehAR, Al Sudairy R, Abu-ShraieN, Al SuwairiW, Ferwana M, MuradMH. Erlotinib in wild type epidermal growth factor receptor non-small cell lung cancer: a systematic review. Ann Thorac Med. 2013; 8(4):204-208.

[49]

ShepherdFA, Rodrigues Pereira J, CiuleanuT, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005; 353(2):123-132.

[50]

ReckM, van Zandwijk N, GridelliC, et al. Erlotinib in advanced non-small cell lung cancer: efficacy and safety findings of the global phase IV tarceva lung cancer survival treatment study. J Thorac Oncol. 2010; 5(10):1616-1622.

[51]

RaimbourgJ, Joalland MP, CabartM, et al. Sensitization of EGFR wild-type non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitor erlotinib. Mol Cancer Ther. 2017; 16(8):1634-1644.

[52]

LiYL, HuX, LiQY, et al. Shikonin sensitizes wild-type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol Med Rep. 2018; 18(4):3882-3890. doi:10.3892/mmr.2018.9347

[53]

KumariS, Gayathri Devi V, BadanaA, DasariVR, MallaRR. CD151-A striking marker for cancer therapy. Biomark Cancer. 2015; 7:7-11.

[54]

HaeuwJF, Goetsch L, BaillyC, CorvaiaN. Tetraspanin CD151 as a target for antibody-based cancer immunotherapy. Biochem Soc Trans. 2011; 39(2):553-558.

[55]

KohnoM, Hasegawa H, MiyakeM, YamamotoT, FujitaS. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer. 2002; 97(3):336-343.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/