Memory inflation: Beyond the acute phase of viral infection

Yanfei Li , Jie Xiao , Chen Li , Mu Yang

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (12) : e13705

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (12) : e13705 DOI: 10.1111/cpr.13705
REVIEW

Memory inflation: Beyond the acute phase of viral infection

Author information +
History +
PDF

Abstract

Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.

Cite this article

Download citation ▾
Yanfei Li, Jie Xiao, Chen Li, Mu Yang. Memory inflation: Beyond the acute phase of viral infection. Cell Proliferation, 2024, 57(12): e13705 DOI:10.1111/cpr.13705

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FangE, LiuX, LiM, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther. 2022; 7(1):94.

[2]

SinghalT. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87(4):281-286.

[3]

RaoultD, ZumlaA, LocatelliF, Ippolito G, KroemerG. Coronavirus infections: epidemiological, clinical and immunological features and hypotheses. Cell Stress. 2020; 4(4):66-75.

[4]

SekineT, Perez-Potti A, Rivera-BallesterosO, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020; 183(1):158-168.e114.

[5]

KedzierskaK, Venturi V, FieldK, DavenportMP, TurnerSJ, DohertyPC. Early establishment of diverse T cell receptor profiles for influenza-specific CD8(+)CD62L(hi) memory T cells. Proc Natl Acad Sci U S A. 2006; 103(24):9184-9189.

[6]

WielandD, Kemming J, SchuchA, et al. TCF1(+) hepatitis C virus-specific CD8(+) T cells are maintained after cessation of chronic antigen stimulation. Nat Commun. 2017; 8:15050.

[7]

HofmannM, Wieland D, PircherH, ThimmeR. Memory vs memory-like: the different facets of CD8(+) T-cell memory in HCV infection. Immunol Rev. 2018; 283(1):232-237.

[8]

Acosta-AmpudiaY, Monsalve DM, RojasM, et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J Infect Dis. 2022; 225(12):2155-2162.

[9]

TaeschlerP, AdamoS, DengY, et al. T-cell recovery and evidence of persistent immune activation 12 months after severe COVID-19. Allergy. 2022; 77(8):2468-2481.

[10]

DuJ, WeiL, LiG, et al. Persistent high percentage of HLA-DR(+)CD38(high) CD8(+) T cells associated with immune disorder and disease severity of COVID-19. Front Immunol. 2021; 12:735125.

[11]

KlenermanP, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016; 16(6):367-377.

[12]

AppayV, DunbarPR, CallanM, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002; 8(4):379-385.

[13]

SnyderCM, ChoKS, BonnettEL, van Dommelen S, ShellamGR, HillAB. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity. 2008; 29(4):650-659.

[14]

FornaraC, Furione M, ZavaglioF, et al. Slow cytomegalovirus-specific CD4(+) and CD8(+) T-cell differentiation:10-year follow-up of primary infection in a small number of immunocompetent hosts. Eur J Immunol. 2021; 51(1):253-256.

[15]

HoltappelsR, Freitag K, RenzahoA, BeckerS, Lemmermann NAW, ReddehaseMJ. Revisiting CD8 T-cell ‘memory inflation’: new insights with implications for cytomegaloviruses as vaccine vectors. Vaccines (Basel). 2020; 8(3):402.

[16]

CurtisHA, SinghT, NewkirkMM. Recombinant cytomegalovirus glycoprotein gB (UL55) induces an autoantibody response to the U1-70 kDa small nuclear ribonucleoprotein. Eur J Immunol. 1999; 29(11):3643-3653.

[17]

WuCS, ChyuanIT, ChiuYL, Chen WL, ShenCY, HsuPN. Preserved specific anti-viral T-cell response but associated with decreased lupus activity in SLE patients with cytomegalovirus infection. Rheumatology (Oxford). 2020; 59(11):3340-3349.

[18]

RotheK, QuandtD, SchubertK, et al. Latent cytomegalovirus infection in rheumatoid arthritis and increased frequencies of cytolytic LIR-1+CD8+ T cells. Arthritis Rheumatol. 2016; 68(2):337-346.

[19]

LuoXH, MengQ, RaoM, et al. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology. 2018; 155(3):294-308.

[20]

GriesslM, Renzaho A, FreitagK, SeckertCK, Reddehase MJ, LemmermannNAW. Stochastic episodes of latent cytomegalovirus transcription drive CD8 T-cell “memory inflation” and avoid immune evasion. Front Immunol. 2021; 12:668885.

[21]

GrassmannS, Mihatsch L, MirJ, et al. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat Immunol. 2020; 21(12):1563-1573.

[22]

WhiteTM, Bonavita CM, StanfieldBA, FarrellHE, Davis-Poynter NJ, CardinRD. The CMV-encoded G protein-coupled receptors M33 and US28 play pleiotropic roles in immune evasion and alter host T cell responses. Front Immunol. 2022; 13:1047299.

[23]

AttafM, RoiderJ, MalikA, et al. Cytomegalovirus-mediated T cell receptor repertoire perturbation is present in early life. Front Immunol. 2020; 11:1587.

[24]

KarrerU, SierroS, WagnerM, et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol. 2003; 170(4):2022-2029.

[25]

KarrerU, WagnerM, SierroS, et al. Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J Virol. 2004; 78(5):2255-2264.

[26]

SierroS, Rothkopf R, KlenermanP. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol. 2005; 35(4):1113-1123.

[27]

TakamuraS. Impact of multiple hits with cognate antigen on memory CD8+ T-cell fate. Int Immunol. 2020; 32(9):571-581.

[28]

O’HaraGA, WeltenSP, KlenermanP, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 2012; 33(2):84-90.

[29]

HaleniusA, HengelH. Human cytomegalovirus and autoimmune disease. Biomed Res Int. 2014; 2014:472978.

[30]

RousselièreA, Delbos L, BressolletteC, BerthaumeM, Charreau B. Mapping and characterization of HCMV-specific unconventional HLA-E-restricted CD8 T cell populations and associated NK and T cell responses using HLA/peptide tetramers and spectral flow cytometry. Int J Mol Sci. 2021; 23(1):263.

[31]

SchoberK, FuchsP, MirJ, et al. The CMV-specific CD8(+) T cell response is dominated by supra-public clonotypes with high generation probabilities. Pathogens. 2020; 9(8):650.

[32]

MuellerS, RouseB. Immune responses to viruses. Clin Immunol. 2008;27:421-431.

[33]

van der GrachtET, Schoonderwoerd MJ, van DuikerenS, et al. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J Immunother Cancer. 2020; 8(2):e001133.

[34]

SallustoF, LenigD, FörsterR, LippM, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999; 401(6754):708-712.

[35]

TomiyamaH, Matsuda T, TakiguchiM. Differentiation of human CD8(+) T cells from a memory to memory/effector phenotype. J Immunol. 2002; 168(11):5538-5550.

[36]

SauceD, LarsenM, LeeseAM, et al. IL-7R alpha versus CCR7 and CD45 as markers of virus-specific CD8+ T cell differentiation: contrasting pictures in blood and tonsillar lymphoid tissue. J Infect Dis. 2007; 195(2):268-278.

[37]

KlenermanP, DunbarPR. CMV and the art of memory maintenance. Immunity. 2008; 29(4):520-522.

[38]

SamsonLD, van den Berg SP, EngelfrietP, et al. Limited effect of duration of CMV infection on adaptive immunity and frailty: insights from a 27-year-long longitudinal study. Clin Transl Immunol. 2020; 9(10):e1193.

[39]

SimsS, Bolinger B, KlenermanP. Increasing inflationary T-cell responses following transient depletion of MCMV-specific memory T cells. Eur J Immunol. 2015; 45(1):113-118.

[40]

SylwesterAW, Mitchell BL, EdgarJB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005; 202(5):673-685.

[41]

SmithCJ, Venturi V, QuigleyMF, et al. Stochastic expansions maintain the clonal stability of CD8(+) T cell populations undergoing memory inflation driven by murine cytomegalovirus. J Immunol. 2020; 204(1):112-121.

[42]

WeltenSPM, Yermanos A, BaumannNS, et al. Tcf1(+) cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Commun. 2020; 11(1):2295.

[43]

TortiN, WaltonSM, BrockerT, Rülicke T, OxeniusA. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 2011; 7(10):e1002313.

[44]

DerhovanessianE, MaierAB, HähnelK, et al. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol. 2011; 92(Pt 12):2746-2756.

[45]

MunksMW, ChoKS, PintoAK, Sierro S, KlenermanP, HillAB. Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol. 2006; 177(1):450-458.

[46]

AbassiL, Cicin-Sain L. The avid competitors of memory inflation. Curr Opin Virol. 2020; 44:162-168.

[47]

NolzJC, RicherMJ. Control of memory CD8(+) T cell longevity and effector functions by IL-15. Mol Immunol. 2020; 117:180-188.

[48]

WirthTC, XueHH, RaiD, et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity. 2010; 33(1):128-140.

[49]

SongY, WangB, SongR, et al. T-cell immunoglobulin and ITIM domain contributes to CD8(+) T-cell immunosenescence. Aging Cell. 2018; 17(2):e12716.

[50]

WuH, TangX, KimHJ, et al. Expression of KLRG1 and CD127 defines distinct CD8(+) subsets that differentially impact patient outcome in follicular lymphoma. J Immunother Cancer. 2021; 9(7):e002662.

[51]

KilincMO, AulakhKS, NairRE, et al. Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol. 2006; 177(10):6962-6973.

[52]

VoehringerD, Koschella M, PircherH. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood. 2002; 100(10):3698-3702.

[53]

BaatenBJ, TinocoR, ChenAT, Bradley LM. Regulation of antigen-experienced T cells: lessons from the quintessential memory marker CD44. Front Immunol. 2012; 3:23.

[54]

KomatsuH, InuiA, SogoT, et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun Ageing. 2006; 3:11.

[55]

ArensR, Loewendorf A, RedekerA, et al. Differential B7-CD28 costimulatory requirements for stable and inflationary mouse cytomegalovirus-specific memory CD8 T cell populations. J Immunol. 2011; 186(7):3874-3881.

[56]

WeltenSP, Redeker A, FrankenKL, et al. The viral context instructs the redundancy of costimulatory pathways in driving CD8(+) T cell expansion. Elife. 2015; 4:e07486.

[57]

GustafsonCE, QiQ, Hutter-SaundersJ, et al. Immune checkpoint function of CD85j in CD8 T cell differentiation and aging. Front Immunol. 2017; 8:692.

[58]

JamesonSC, Masopust D. Understanding subset diversity in T cell memory. Immunity. 2018; 48(2):214-226.

[59]

HertoghsKM, Moerland PD, van StijnA, et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J Clin Invest. 2010; 120(11):4077-4090.

[60]

RieraL, Gariglio M, ValenteG, et al. Murine cytomegalovirus replication in salivary glands is controlled by both perforin and granzymes during acute infection. Eur J Immunol. 2000; 30(5):1350-1355.

[61]

KhairallahC, Déchanet-Merville J, CaponeM. γδ T cell-mediated immunity to cytomegalovirus infection. Front Immunol. 2017; 8:105.

[62]

TomiyamaH, TakataH, MatsudaT, Takiguchi M. Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function. Eur J Immunol. 2004; 34(4):999-1010.

[63]

FerreiraVH, KumarD, HumarA. Deep profiling of the CD8+ T-cell compartment identifies activated cell subsets and multifunctional responses associated with control of cytomegalovirus viremia. Transplantation. 2019; 103(3):613-621.

[64]

WaltonSM, TortiN, MandaricS, Oxenius A. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency. Eur J Immunol. 2011; 41(8):2248-2259.

[65]

van de BergPJ, van Stijn A, Ten BergeIJ, van LierRA. A fingerprint left by cytomegalovirus infection in the human T cell compartment. J Clin Virol. 2008; 41(3):213-217.

[66]

BironCA, TarrioML. Immunoregulatory cytokine networks:60 years of learning from murine cytomegalovirus. Med Microbiol Immunol. 2015; 204(3):345-354.

[67]

PickerLJ, SinghMK, ZdraveskiZ, et al. Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood. 1995; 86(4):1408-1419.

[68]

DengW, LiraV, HudsonTE, et al. Recombinant listeria promotes tumor rejection by CD8(+) T cell-dependent remodeling of the tumor microenvironment. Proc Natl Acad Sci U S A. 2018; 115(32):8179-8184.

[69]

KellyCD, WelteK, MurrayHW. Antigen-induced human interferon-gamma production. Differential dependence on interleukin 2 and its receptor. J Immunol. 1987; 139(7):2325-2328.

[70]

HashimotoM, ImSJ, ArakiK, Ahmed R. Cytokine-mediated regulation of CD8 T-cell responses during acute and chronic viral infection. Cold Spring Harb Perspect Biol. 2019; 11(1):a028464.

[71]

SanduI, Oxenius A. T-cell heterogeneity, progenitor-progeny relationships, and function during latent and chronic viral infections. Immunol Rev. 2023; 316(1):136-159.

[72]

VellaLA, HeratiRS, WherryEJ. CD4(+) T cell differentiation in chronic viral infections: the Tfh perspective. Trends Mol Med. 2017; 23(12):1072-1087.

[73]

DupontL, ReevesMB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol. 2016; 26(2):75-89.

[74]

GriffithsP, ReevesM. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021; 19(12):759-773.

[75]

JinHT, Anderson AC, TanWG, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010; 107(33):14733-14738.

[76]

VirginHW, WherryEJ, AhmedR. Redefining chronic viral infection. Cell. 2009; 138(1):30-50.

[77]

GriffithsPD. CMV as a cofactor enhancing progression of AIDS. J Clin Virol. 2006; 35(4):489-492.

[78]

WebsterA, LeeCA, CookDG, et al. Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet. 1989; 2(8654):63-66.

[79]

LepillerQ, Tripathy MK, Di MartinoV, KantelipB, Herbein G. Increased HCMV seroprevalence in patients with hepatocellular carcinoma. Virol J. 2011; 8:485.

[80]

DominguezCX, Amezquita RA, GuanT, et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med. 2015; 212(12):2041-2056.

[81]

MuellerSN, AhmedR. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2009; 106(21):8623-8628.

[82]

Cicin-SainL, ArensR. Exhaustion and inflation at antipodes of T cell responses to chronic virus infection. Trends Microbiol. 2018; 26(6):498-509.

[83]

DayCL, Kaufmann DE, KiepielaP, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006; 443(7109):350-354.

[84]

BarberDL, WherryEJ, MasopustD, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006; 439(7077):682-687.

[85]

WherryEJ, HaSJ, KaechSM, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007; 27(4):670-684.

[86]

WherryEJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8):486-499.

[87]

AngelosantoJM, Blackburn SD, CrawfordA, WherryEJ. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J Virol. 2012; 86(15):8161-8170.

[88]

PaleyMA, KroyDC, OdorizziPM, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012; 338(6111):1220-1225.

[89]

BaumannNS, WeltenSPM, TortiN, et al. Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathog. 2019; 15(5):e1007785.

[90]

GabelM, Baumann NS, OxeniusA, GrawF. Investigating the dynamics of MCMV-specific CD8(+) T cell responses in individual hosts. Front Immunol. 2019; 10:1358.

[91]

WeltenSPM, Baumann NS, OxeniusA. Fuel and brake of memory T cell inflation. Med Microbiol Immunol. 2019; 208(3–4):329-338.

[92]

WynnKK, FultonZ, CooperL, et al. Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection. Blood. 2008; 111(8):4283-4292.

[93]

HutchinsonS, SimsS, O’HaraG, et al. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS One. 2011; 6(2):e14646.

[94]

KhanS, Zimmermann A, BaslerM, GroettrupM, HengelH. A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J Virol. 2004; 78(4):1831-1842.

[95]

Ynga-DurandMA, Dekhtiarenko I, Cicin-SainL. Vaccine vectors harnessing the power of cytomegaloviruses. Vaccines (Basel). 2019; 7(4):152.

[96]

KongF, YouH, KongD, Zheng K, TangR. The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis. Virol J. 2019; 16(1):73.

[97]

KhorR, McElroy LJ, WhittakerGR. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic. 2003; 4(12):857-868.

[98]

WidjajaCE, OlveraJG, MetzPJ, et al. Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. J Clin Invest. 2017; 127(10):3609-3623.

[99]

LineburgKE, Srihari S, AltafM, et al. Rapid detection of SARS-CoV-2-specific memory T-cell immunity in recovered COVID-19 cases. Clin Transl Immunol. 2020; 9(12):e1219.

[100]

DanJM, MateusJ, KatoY, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021; 371(6529):eabf4063.

[101]

DesterkeC, TurhanAG, Bennaceur-GriscelliA, GriscelliF. HLA-dependent heterogeneity and macrophage immunoproteasome activation during lung COVID-19 disease. J Transl Med. 2021; 19(1):290.

[102]

TorresL, TangQ. Immediate-early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses. Virol Sin. 2014; 29(6):343-352.

[103]

Cicin-SainL, BrienJD, UhrlaubJL, Drabig A, MaranduTF, Nikolich-ZugichJ. Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012; 8(8):e1002849.

[104]

WallerEC, DayE, SissonsJG, Wills MR. Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol. 2008; 197(2):83-96.

[105]

HanleyPJ, Melenhorst JJ, NikiforowS, et al. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015; 7(285):285ra263.

[106]

HesseJ, ReydaS, TenzerS, et al. Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection. J Virol. 2013; 87(9):5229-5238.

[107]

TaylorRT, Bresnahan WA. Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol. 2006; 80(2):920-928.

[108]

FieldingCA, WeekesMP, NobreLV, et al. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. Elife. 2017; 6:e22206.

[109]

HesseJ, AmeresS, BesoldK, Krauter S, MoosmannA, PlachterB. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol. 2013; 94(Pt 2):376-386.

[110]

FrascaroliG, LecherC, VaraniS, et al. Human macrophages escape inhibition of major histocompatibility complex-dependent antigen presentation by cytomegalovirus and drive proliferation and activation of memory CD4(+) and CD8(+) T cells. Front Immunol. 2018; 9:1129.

[111]

KuhnR, SanduI, AgrafiotisA, et al. Clonally expanded virus-specific CD8 T cells acquire diverse transcriptional phenotypes during acute, chronic, and latent infections. Front Immunol. 2022; 13:782441.

[112]

RenzahoA, Schmiedeke JK, GriesslM, KühnapfelB, Seckert CK, LemmermannNAW. Transcripts expressed in cytomegalovirus latency coding for an antigenic IE/E phase peptide that drives “memory inflation”. Med Microbiol Immunol. 2019; 208(3–4):439-446.

[113]

DekhtiarenkoI, RattsRB, BlatnikR, et al. Peptide processing is critical for T-cell memory inflation and may Be optimized to improve immune protection by CMV-based vaccine vectors. PLoS Pathog. 2016; 12(12):e1006072.

[114]

SimpsonJ, StarkeCE, OrtizAM, et al. Multiple modes of antigen exposure induce clonotypically diverse epitope-specific CD8+ T cells across multiple tissues in nonhuman primates. PLoS Pathog. 2022; 18(7):e1010611.

[115]

MaterneEC, Lilleri D, GarofoliF, et al. Cytomegalovirus-specific T cell epitope recognition in congenital cytomegalovirus mother-infant pairs. Front Immunol. 2020; 11:568217.

[116]

AnguloA, GhazalP, MesserleM. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol. 2000; 74(23):11129-11136.

[117]

RedekerA, WeltenSP, ArensR. Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol. 2014; 44(4):1046-1057.

[118]

SnyderCM, ChoKS, BonnettEL, Allan JE, HillAB. Sustained CD8+ T cell memory inflation after infection with a single-cycle cytomegalovirus. PLoS Pathog. 2011; 7(10):e1002295.

[119]

AbanaCO, Pilkinton MA, GaudieriS, et al. Cytomegalovirus (CMV) epitope-specific CD4(+) T cells are inflated in HIV(+) CMV(+) subjects. J Immunol. 2017; 199(9):3187-3201.

[120]

WaggonerSN, Cornberg M, SelinLK, WelshRM. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2011; 481(7381):394-398.

[121]

MunksMW, PintoAK, DoomCM, Hill AB. Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol. 2007; 178(11):7235-7241.

[122]

TortiN, WaltonSM, MurphyKM, Oxenius A. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol. 2011; 41(9):2612-2618.

[123]

KlenermanP. The (gradual) rise of memory inflation. Immunol Rev. 2018; 283(1):99-112.

[124]

SeckertCK, Schader SI, EbertS, et al. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol. 2011; 92(Pt 9):1994-2005.

[125]

ArensR, Schoenberger SP. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev. 2010; 235(1):190-205.

[126]

SnyderCM, Loewendorf A, BonnettEL, CroftM, Benedict CA, HillAB. CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection. J Immunol. 2009; 183(6):3932-3941.

[127]

UtzschneiderDT, Charmoy M, ChennupatiV, et al. T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity. 2016; 45(2):415-427.

[128]

EscobarG, Mangani D, AndersonAC. T cell factor 1: a master regulator of the T cell response in disease. Sci Immunol. 2020; 5(53):eabb9726.

[129]

SmithCJ, QuinnM, SnyderCM. CMV-specific CD8 T cell differentiation and localization: implications for adoptive therapies. Front Immunol. 2016; 7:352.

[130]

KratchmarovR, MagunAM, ReinerSL. TCF1 expression marks self-renewing human CD8(+) T cells. Blood Adv. 2018; 2(14):1685-1690.

[131]

Schmueck-HenneresseM, Sharaf R, VogtK, et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015; 194(11):5559-5567.

[132]

Cicin-SainL. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol. 2019; 208(3–4):339-347.

[133]

ZhouX, YuS, ZhaoDM, Harty JT, BadovinacVP, XueHH. Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity. 2010; 33(2):229-240.

[134]

PanditH, Valentin A, AngelM, et al. Step-dose IL-7 treatment promotes systemic expansion of T cells and alters immune cell landscape in blood and lymph nodes. iScience. 2023; 26(2):105929.

[135]

FryTJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol. 2005; 174(11):6571-6576.

[136]

KnopL, DeiserK, BankU, et al. IL-7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival. Eur J Immunol. 2020; 50(6):846-857.

[137]

van LeeuwenEM, de Bree GJ, RemmerswaalEB, et al. IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood. 2005; 106(6):2091-2098.

[138]

BanhC, Fugère C, BrossayL. Immunoregulatory functions of KLRG1 cadherin interactions are dependent on forward and reverse signaling. Blood. 2009; 114(26):5299-5306.

[139]

Herndler-BrandstetterD, Ishigame H, ShinnakasuR, et al. KLRG1(+) effector CD8(+) T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity. 2018; 48(4):716-729.e718.

[140]

BlaumF, LukasD, ReddehaseMJ, Lemmermann NAW. Localization of viral epitope-specific CD8 T cells during cytomegalovirus latency in the lungs and recruitment to lung parenchyma by airway challenge infection. Life (Basel). 2021; 11(9):918.

[141]

TataA, DodardG, FugèreC, et al. Combination blockade of KLRG1 and PD-1 promotes immune control of local and disseminated cancers. Onco Targets Ther. 2021; 10(1):1933808.

[142]

BöttcherJP, BeyerM, MeissnerF, et al. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat Commun. 2015; 6:8306.

[143]

GordonCL, LeeLN, SwadlingL, et al. Induction and maintenance of CX3CR1-intermediate peripheral memory CD8(+) T cells by persistent viruses and vaccines. Cell Rep. 2018; 23(3):768-782.

[144]

GerlachC, Moseman EA, LoughheadSM, et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity. 2016; 45(6):1270-1284.

[145]

SalumetsA, TserelL, RummAP, et al. Epigenetic quantification of immunosenescent CD8(+) TEMRA cells in human blood. Aging Cell. 2022; 21(5):e13607.

[146]

WeltenSP, Redeker A, FrankenKL, et al. CD27-CD70 costimulation controls T cell immunity during acute and persistent cytomegalovirus infection. J Virol. 2013; 87(12):6851-6865.

[147]

LuJ, ChenG, SorokinaA, et al. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8(+) T cells in healthy human adults. Immun Ageing. 2022; 19(1):54.

[148]

QuerolL, Lleixà C. Novel immunological and therapeutic insights in Guillain-Barré syndrome and CIDP. Neurotherapeutics. 2021; 18(4):2222-2235.

[149]

Al-HakemH, DoetsAY, StinoAM, et al. CSF findings in relation to clinical characteristics, subtype, and disease course in patients with Guillain-Barré syndrome. Neurology. 2023; 100(23): e2386-e2397.

[150]

YangM, ShiXQ, PeyretC, et al. Effector/memory CD8(+) T cells synergize with co-stimulation competent macrophages to trigger autoimmune peripheral neuropathy. Brain Behav Immun. 2018; 71:142-157.

[151]

OrlikowskiD, Porcher R, Sivadon-TardyV, et al. Guillain-Barré syndrome following primary cytomegalovirus infection: a prospective cohort study. Clin Infect Dis. 2011; 52(7):837-844.

[152]

OladiranO, YangM, RiveraVAG, et al. Murine cytomegalovirus infection in mice results in an acute inflammatory reaction in peripheral nerves. J Neuroimmunol. 2019; 335:577017.

[153]

FinstererJ. Neurological adverse reactions to SARS-CoV-2 vaccines. Clin Psychopharmacol Neurosci. 2023; 21(2):222-239.

[154]

YukiN, Hartung HP. Guillain-Barré syndrome. N Engl J Med. 2012; 366(24):2294-2304.

[155]

LangerakT, van Rooij I, DoornekampL, et al. Guillain-Barré syndrome in Suriname; clinical presentation and identification of preceding infections. Front Neurol. 2021; 12:635753.

[156]

MeierUC, CipianRC, KarimiA, Ramasamy R, MiddeldorpJM. Cumulative roles for Epstein-Barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Front Immunol. 2021; 12:757302.

[157]

YangM, Rainone A, ShiXQ, FournierS, ZhangJ. A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathol Commun. 2014; 2:5.

[158]

YangM, PeyretC, ShiXQ, et al. Evidence from human and animal studies: pathological roles of CD8(+) T cells in autoimmune peripheral neuropathies. Front Immunol. 2015; 6:532.

[159]

SúkeníkováL, MalloneA, Schreiner B, et al. Autoreactive T cells target peripheral nerves in Guillain-Barré syndrome. Nature. 2024; 626(7997):160-168.

[160]

LeungJ, SejvarJJ, SoaresJ, Lanzieri TM. Guillain-Barré syndrome and antecedent cytomegalovirus infection, USA 2009-2015. Neurol Sci. 2020; 41(4):885-891.

[161]

DenicA, WootlaB, RodriguezM. CD8(+) T cells in multiple sclerosis. Expert Opin Ther Targets. 2013; 17(9):1053-1066.

[162]

SinhaS, ItaniFR, KarandikarNJ. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res. 2014; 59(1–3):254-265.

[163]

BabbeH, RoersA, WaismanA, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000; 192(3):393-404.

[164]

LegrouxL, ArbourN. Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol. 2015; 10(4):528-546.

[165]

van OostenBW, LaiM, HodgkinsonS, et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology. 1997; 49(2):351-357.

[166]

MilovanovicJ, Popovic B, MilovanovicM, et al. Murine cytomegalovirus infection induces susceptibility to EAE in resistant BALB/c mice. Front Immunol. 2017; 8:192.

[167]

CasiraghiC, Shanina I, ChoS, FreemanML, Blackman MA, HorwitzMS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog. 2012; 8(5):e1002715.

[168]

JörgS, GrohmeDA, ErzlerM, et al. Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cell Mol Life Sci. 2016; 73(24):4611-4622.

[169]

GettsDR, Chastain EM, TerryRL, MillerSD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013; 255(1):197-209.

[170]

JanahiEMA, DasS, BhattacharyaSN, et al. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog. 2018; 120:132-139.

[171]

HoHsiehA, WangCM, WuYJ, ChenA, ChangMI, Chen JY. B cell epitope of human cytomegalovirus phosphoprotein 65 (HCMV pp65) induced anti-dsDNA antibody in BALB/c mice. Arthritis Res Ther. 2017; 19(1):65.

[172]

PlummerM, de Martel C, VignatJ, FerlayJ, BrayF, FranceschiS. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016; 4(9): e609-e616.

[173]

de MartelC, Georges D, BrayF, FerlayJ, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020; 8(2): e180-e190.

[174]

Söderberg-NauclérC. Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med. 2006; 259(3):219-246.

[175]

KrenzlinH, BeheraP, LorenzV, et al. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest. 2019; 129(4):1671-1683.

[176]

KimJ, LeeWW, HwangES. Human cytomegalovirus (HCMV)-infected astrocytoma cells impair the function of HCMV-specific cytotoxic T cells. J Korean Med Sci. 2020; 35(27):e218.

[177]

SampsonJH, Mitchell DA. Is cytomegalovirus a therapeutic target in glioblastoma? Clin Cancer Res. 2011; 17(14):4619-4621.

[178]

YangZ, TangX, McMullenTPW, Brindley DN, HemmingsDG. PDGFRα enhanced infection of breast cancer cells with human cytomegalovirus but infection of fibroblasts increased prometastatic inflammation involving lysophosphatidate signaling. Int J Mol Sci. 2021; 22(18):9817.

[179]

NagarshethN, WichaMS, ZouW. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017; 17(9):559-572.

[180]

KorbeckiJ, KojderK, SimińskaD, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci. 2020; 21(21):8412.

[181]

ParryEM, Lemvigh CK, DengS, et al. ZNF683 marks a CD8(+) T cell population associated with anti-tumor immunity following anti-PD-1 therapy for Richter syndrome. Cancer Cell. 2023; 41(10):1803-1816.e1808.

[182]

LeeSW, ChoiHY, LeeGW, et al. CD8(+) TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer. 2021; 9(9):e002709.

[183]

LiaoCP, BookerRC, BrosseauJP, et al. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest. 2018; 128(7):2848-2861.

[184]

SarantisP, Trifylli EM, KoustasE, PapavassiliouKA, Karamouzis MV, PapavassiliouAG. Immune microenvironment and immunotherapeutic management in virus-associated digestive system tumors. Int J Mol Sci. 2022; 23(21):13612.

[185]

BeyerM, Karbach J, MallmannMR, et al. Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with “division arrest anergy”. Cancer Res. 2009; 69(10):4346-4354.

[186]

CroughT, KhannaR. Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev. 2009; 22(1):76-98.

[187]

YangB, LiX, ZhangW, et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med. 2022; 3(12):100856.

[188]

MarxS, WilkenF, MiebachL, et al. Immunophenotyping of circulating and intratumoral myeloid and T cells in glioblastoma patients. Cancers (Basel). 2022; 14(23):5751.

[189]

StragliottoG, Pantalone MR, RahbarA, BartekJ, Söderberg-Naucler C. Valganciclovir as add-on to standard therapy in glioblastoma patients. Clin Cancer Res. 2020; 26(15):4031-4039.

[190]

StragliottoG, RahbarA, SolbergNW, et al. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer. 2013; 133(5):1204-1213.

[191]

MaimelaNR, LiuS, ZhangY. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019; 17:1-13.

[192]

SmithC, Lineburg KE, MartinsJP, et al. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. J Clin Invest. 2020; 130(11):6041-6053.

[193]

DziurzynskiK, ChangSM, HeimbergerAB, et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 2012; 14(3):246-255.

[194]

WeathersSP, Penas-Prado M, PeiBL, et al. Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: results from a phase I/II trial. Clin Cancer Res. 2020; 26(14):3565-3577.

[195]

BaxevanisCN, PerezSA, PapamichailM. Cancer immunotherapy. Crit Rev Clin Lab Sci. 2009; 46(4):167-189.

[196]

IgarashiY, SasadaT. Cancer vaccines: toward the next breakthrough in cancer immunotherapy. J Immunol Res. 2020; 2020:5825401.

[197]

MärklF, HuynhD, EndresS, Kobold S. Utilizing chemokines in cancer immunotherapy. Trends Cancer. 2022; 8(8):670-682.

[198]

MaS, LiX, WangX, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019; 15(12):2548-2560.

[199]

CarlinoMS, LarkinJ, LongGV. Immune checkpoint inhibitors in melanoma. Lancet. 2021; 398(10304):1002-1014.

[200]

ReckM, RemonJ, HellmannMD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022; 40(6):586-597.

[201]

HaslauerT, GreilR, ZaborskyN, Geisberger R. CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 2021; 22(16):8996.

[202]

BernerF, BomzeD, DiemS, et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 2019; 5(7):1043-1047.

[203]

BagchiS, YuanR, EnglemanEG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021; 16:223-249.

[204]

LiuJ, LiuD, HuG, et al. Circulating memory PD-1(+)CD8(+) T cells and PD-1(+)CD8(+)T/PD-1(+)CD4(+)T cell ratio predict response and outcome to immunotherapy in advanced gastric cancer patients. Cancer Cell Int. 2023; 23(1):274.

[205]

TangR, XuJ, ZhangB, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020; 13(1):110.

[206]

ZhangG, LiuA, YangY, et al. Clinical predictive value of naïve and memory T cells in advanced NSCLC. Front Immunol. 2022; 13:996348.

[207]

XieYQ, ArikH, WeiL, et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater Sci. 2019; 7(4):1345-1357.

[208]

GebhardtT, ParkSL, ParishIA. Stem-like exhausted and memory CD8(+) T cells in cancer. Nat Rev Cancer. 2023; 23(11):780-798.

[209]

MorrisEC, Neelapu SS, GiavridisT, SadelainM. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022; 22(2):85-96.

[210]

ChuahS, LeeJ, SongY, et al. Uncoupling immune trajectories of response and adverse events from anti-PD-1 immunotherapy in hepatocellular carcinoma. J Hepatol. 2022; 77(3):683-694.

[211]

ZanggerN, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol. 2022; 77:102185.

[212]

YaoC, LouG, SunHW, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8(+) T cells. Nat Immunol. 2021; 22(3):370-380.

[213]

ZuhairM, SmitGSA, WallisG, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019; 29(3):e2034.

[214]

LankesK, Hundorfean G, HarrerT, et al. Anti-TNF-refractory colitis after checkpoint inhibitor therapy: possible role of CMV-mediated immunopathogenesis. Onco Targets Ther. 2016; 5(6):e1128611.

[215]

AnastasopoulouA, Samarkos M, DiamantopoulosP, et al. Cytomegalovirus infections in patients treated with immune checkpoint inhibitors for solid malignancies. Open Forum Infect Dis. 2023; 10(4):ofad164.

[216]

van TurenhoutST, Berghuis M, SnaebjornssonP, et al. Cytomegalovirus in steroid-refractory immune checkpoint inhibition-related colitis. J Thorac Oncol. 2020; 15(1): e15-e20.

[217]

ÇuburuN, Bialkowski L, PontejoSM, et al. Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proc Natl Acad Sci U S A. 2022; 119(26):e2116738119.

[218]

SchuesslerA, SmithC, BeagleyL, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014; 74(13):3466-3476.

[219]

LiM, Garforth SJ, O’ConnorKE, et al. T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- and CMV-specific T cell expansion in humanized mice. J Clin Invest. 2021; 131(23):e141051.

[220]

RosatoPC, Wijeyesinghe S, StolleyJM, et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat Commun. 2019; 10(1):567.

[221]

CamiciGG, Liberale L. Aging: the next cardiovascular disease? Eur Heart J. 2017; 38(21):1621-1623.

[222]

TarpJB, JensenAS, EngstrømT, Holstein-RathlouNH, Søndergaard L. Cyanotic congenital heart disease and atherosclerosis. Heart. 2017; 103(12):897-900.

[223]

SheaS, Navas-Acien A, ShimboD, et al. Spatially weighted coronary artery calcium score and coronary heart disease events in the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2021; 14(1):e011981.

[224]

KongQ, MaX, LiL, WangC, DuX, WanY. Atherosclerosis burden of brain- and heart-supplying arteries and the relationship with vascular risk in patients with ischemic stroke. J Am Heart Assoc. 2023; 12(16):e029505.

[225]

FongIW. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ. 2000; 163(1):49-56.

[226]

HanssonGK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011; 12(3):204-212.

[227]

LibbyP. Inflammation in atherosclerosis. Nature. 2002; 420(6917):868-874.

[228]

CumminsEP, CreanD. Hypoxia and inflammatory bowel disease. Microbes Infect. 2017; 19(3):210-221.

[229]

PetersMC, MaasRGC, van AdrichemI, et al. Metabolic maturation increases susceptibility to hypoxia-induced damage in human iPSC-derived cardiomyocytes. Stem Cells Transl Med. 2022; 11(10):1040-1051.

[230]

WolfD, LeyK. Immunity and inflammation in atherosclerosis. Circ Res. 2019; 124(2):315-327.

[231]

FrostegårdJ. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013; 11:117.

[232]

HerringtonW, LaceyB, SherlikerP, Armitage J, LewingtonS. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016; 118(4):535-546.

[233]

SchaftenaarF, Frodermann V, KuiperJ, LutgensE. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016; 27(3):209-215.

[234]

BäckM, WeberC, LutgensE. Regulation of atherosclerotic plaque inflammation. J Intern Med. 2015; 278(5):462-482.

[235]

KobiyamaK, LeyK. Atherosclerosis. Circ Res. 2018; 123(10):1118-1120.

[236]

McLaughlinMM, MaY, ScherzerR, et al. Association of viral persistence and atherosclerosis in adults with treated HIV infection. JAMA Netw Open. 2020; 3(10):e2018099.

[237]

BasonC, Corrocher R, LunardiC, et al. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet. 2003; 362(9400):1971-1977.

[238]

JungSH, LeeKT. Atherosclerosis by virus infection—a short review. Biomedicine. 2022; 10(10):2634.

[239]

SaigusaR, Winkels H, LeyK. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 2020; 17(7):387-401.

[240]

CochainC, Zernecke A. Protective and pathogenic roles of CD8(+) T cells in atherosclerosis. Basic Res Cardiol. 2016; 111(6):71.

[241]

DepuydtMAC, PrangeKHM, SlendersL, et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res. 2020; 127(11):1437-1455.

[242]

FernandezDM, RahmanAH, FernandezNF, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019; 25(10):1576-1588.

[243]

SchäferS, Zernecke A. CD8(+) T cells in atherosclerosis. Cells. 2020; 10(1):37.

[244]

CrumpackerCS. Invited commentary: human cytomegalovirus, inflammation, cardiovascular disease, and mortality. Am J Epidemiol. 2010; 172(4):372-374.

[245]

EpsteinSE, SpeirE, ZhouYF, Guetta E, LeonM, FinkelT. The role of infection in restenosis and atherosclerosis: focus on cytomegalovirus. Lancet. 1996; 348(Suppl 1): s13-s17.

[246]

OlofssonPS, JattaK, WågsäterD, et al. The antiviral cytomegalovirus inducible gene 5/viperin is expressed in atherosclerosis and regulated by proinflammatory agents. Arterioscler Thromb Vasc Biol. 2005; 25(7): e113-e116.

[247]

AssingerA, KralJB, YaiwKC, et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol. 2014; 34(4):801-809.

[248]

LvYL, HanFF, GongLL, et al. Human cytomegalovirus infection and vascular disease risk: a meta-analysis. Virus Res. 2017; 227:124-134.

[249]

JiaYJ, LiuJ, HanFF, et al. Cytomegalovirus infection and atherosclerosis risk: a meta-analysis. J Med Virol. 2017; 89(12):2196-2206.

[250]

KrebsP, Scandella E, BolingerB, EngelerD, MillerS, LudewigB. Chronic immune reactivity against persisting microbial antigen in the vasculature exacerbates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 2007; 27(10):2206-2213.

[251]

DuY, ZhangG, LiuZ. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J. 2018; 15(1):31.

[252]

van DuijnJ, Kritikou E, BenneN, et al. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc Res. 2019; 115(4):729-738.

[253]

GugliesiF, Pasquero S, GriffanteG, et al. Human cytomegalovirus and autoimmune diseases: where are we? Viruses. 2021; 13(2):260.

[254]

ReddehaseMJ, Lemmermann NAW. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol. 2019; 208(3–4):391-403.

[255]

BolingerB, SimsS, O’HaraG, et al. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. J Immunol. 2013; 190(8):4162-4174.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/