RNA m6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells

Zhongqu Su , Yu Dong , Jiatong Sun , You Wu , Qingqing Wei , Yuwei Liang , Zhiyi Lin , Yujun Li , Lu Shen , Chenxiang Xi , Li Wu , Yiliang Xu , Yingdong Liu , Jiqing Yin , Hong Wang , Kerong Shi , Rongrong Le , Shaorong Gao , Xiaocui Xu

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13696

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (9) : e13696 DOI: 10.1111/cpr.13696
ORIGINAL ARTICLE

RNA m6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells

Author information +
History +
PDF

Abstract

N6-methyladenosine (m6A) exerts essential roles in early embryos, especially in the maternal-to-zygotic transition stage. However, the landscape and roles of RNA m6A modification during the transition between pluripotent stem cells and 2-cell-like (2C-like) cells remain elusive. Here, we utilised ultralow-input RNA m6A immunoprecipitation to depict the dynamic picture of transcriptome-wide m6A modifications during 2C-like transitions. We found that RNA m6A modification was preferentially enriched in zygotic genome activation (ZGA) transcripts and MERVL with high expression levels in 2C-like cells. During the exit of the 2C-like state, m6A facilitated the silencing of ZGA genes and MERVL. Notably, inhibition of m6A methyltransferase METTL3 and m6A reader protein IGF2BP2 is capable of significantly delaying 2C-like state exit and expanding 2C-like cells population. Together, our study reveals the critical roles of RNA m6A modification in the transition between 2C-like and pluripotent states, facilitating the study of totipotency and cell fate decision in the future.

Cite this article

Download citation ▾
Zhongqu Su, Yu Dong, Jiatong Sun, You Wu, Qingqing Wei, Yuwei Liang, Zhiyi Lin, Yujun Li, Lu Shen, Chenxiang Xi, Li Wu, Yiliang Xu, Yingdong Liu, Jiqing Yin, Hong Wang, Kerong Shi, Rongrong Le, Shaorong Gao, Xiaocui Xu. RNA m6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells. Cell Proliferation, 2024, 57(9): e13696 DOI:10.1111/cpr.13696

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XuQ, XieW. Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol. 2018; 28(3):237-253.

[2]

BouniolC, NguyenE, DebeyP. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res. 1995; 218(1):57-62.

[3]

LuF, ZhangY. Cell totipotency: molecular features, induction, and maintenance. Natl Sci Rev. 2015; 2(2):217-225.

[4]

SchultzRM. Regulation of zygotic gene activation in the mouse. Bioessays. 1993; 15(8):531-538.

[5]

TarkowskiAK. Experiments on the development of isolated blastomeres of mouse eggs. Nature. 1959; 184(4695):1286-1287.

[6]

TarkowskiAK, Wróblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol. 1967; 18(1):155-180.

[7]

FalcoG, LeeSL, StanghelliniI, BasseyUC, Hamatani T, KoMS. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev Biol. 2007; 307(2):539-550.

[8]

GabriëlsJ, Beckers MC, DingH, et al. Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene. 1999; 236(1):25-32.

[9]

GengLN, YaoZ, SniderL, et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell. 2012; 22(1):38-51.

[10]

GuoM, ZhangY, ZhouJ, et al. Precise temporal regulation of Dux is important for embryo development. Cell Res. 2019; 29(11):956-959.

[11]

CokerH, WeiG, BrockdorffN. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 2019; 1862(3):310-318.

[12]

LiuJ, DouX, ChenC, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020; 367(6477):580-586.

[13]

LiuJ, GaoM, HeJ, et al. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature. 2021; 591(7849):322-326.

[14]

RoundtreeIA, EvansME, PanT, HeC. Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169(7):1187-1200.

[15]

YueY, LiuJ, HeC. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015; 29(13):1343-1355.

[16]

WangY, LiY, SkulandT, et al. The RNA m6A landscape of mouse oocytes and preimplantation embryos. Nat Struct Mol Biol. 2023; 30(5):703-709.

[17]

IvanovaI, MuchC, Di GiacomoM, et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 2017; 67(6):1059-1067.e4.

[18]

LiuHB, Muhammad T, GuoY, et al. RNA-binding protein IGF2BP2/IMP2 is a critical maternal activator in early zygotic genome activation. Adv Sci. 2019; 6(15):1900295.

[19]

WuY, XuX, QiM, et al. N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat Cell Biol. 2022; 24(6):917-927.

[20]

MacfarlanTS, Gifford WD, DriscollS, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature. 2012; 487(7405):57-63.

[21]

ZalzmanM, FalcoG, SharovaLV, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature. 2010; 464(7290):858-863.

[22]

ChenZ, ZhangY. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat Genet. 2019; 51(6):947-951.

[23]

De IacoA, Coudray A, DucJ, TronoD. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 2019; 20(5):e47382.

[24]

De IacoA, PlanetE, ColuccioA, Verp S, DucJ, TronoD. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet. 2017; 49(6):941-945.

[25]

Eckersley-MaslinM, Alda-Catalinas C, BlotenburgM, KreibichE, Krueger C, ReikW. Dppa2 and Dppa4 directly regulate the dux-driven zygotic transcriptional program. Genes Dev. 2019; 33(3–4):194-208.

[26]

HendricksonPG, Doráis JA, GrowEJ, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet. 2017; 49(6):925-934.

[27]

PerchardeM, LinCJ, YinY, et al. A LINE1-Nucleolin partnership regulates early development and ESC identity. Cell. 2018; 174(2):391-405.e319.

[28]

TianQ, WangXF, XieSM, Yin Y, ZhouLQ. H3.3 impedes zygotic transcriptional program activated by dux. Biochem Biophys Res Commun. 2020; 522(2):422-427.

[29]

WhiddonJL, Langford AT, WongCJ, ZhongJW, Tapscott SJ. Conservation and innovation in the DUX4-family gene network. Nat Genet. 2017; 49(6):935-940.

[30]

YanYL, ZhangC, HaoJ, et al. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol. 2019; 17(6):e3000324.

[31]

ZhangW, ChenF, ChenR, et al. Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 2019; 47(16):8485-8501.

[32]

XuY, ZhaoJ, RenY, et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res. 2022; 32(6):513-529.

[33]

YangM, YuH, YuX, et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell. 2022; 29(3):400-418.e13.

[34]

ChenC, LiuW, GuoJ, et al. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell. 2021; 12(6):455-474.

[35]

ZhangY, HuangY, DongY, et al. Unique patterns of H3K4me3 and H3K27me3 in 2-cell-like embryonic stem cells. Stem Cell Rep. 2021; 16(3):458-469.

[36]

LiH, SunJ, DongY, et al. Remodeling of H3K9me3 during the pluripotent to totipotent-like state transition. Stem Cell Rep. 2023; 18(2):449-462.

[37]

Eckersley-MaslinMA, Svensson V, KruegerC, et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 2016; 17(1):179-192.

[38]

DominissiniD, Moshitch-Moshkovitz S, SchwartzS, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485(7397):201-206.

[39]

XiaoS, CaoS, HuangQ, et al. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019; 21(5):651-661.

[40]

Eckersley-MaslinMA, Alda-Catalinas C, ReikW. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018; 19(7):436-450.

[41]

GiffordWD, PfaffSL, MacfarlanTS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 2013; 23(5):218-226.

[42]

PeastonAE, Evsikov AV, GraberJH, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004; 7(4):597-606.

[43]

FuX, Djekidel MN, ZhangY. A transcriptional roadmap for 2C-like-to-pluripotent state transition. Sci Adv. 2020; 6(22):eaay5181.

[44]

HuangH, WengH, SunW, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018; 20(3):285-295.

[45]

YankovaE, Blackaby W, AlbertellaM, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021; 593(7860):597-601.

[46]

LiuJ, YueY, HanD, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2):93-95.

[47]

YangF, HuangX, ZangR, et al. DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state. Cell Stem Cell. 2020; 26(2):234-250.e7.

[48]

WengH, HuangF, YuZ, et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022; 40(12):1566-1582.e10.

[49]

ZhaoBS, WangX, BeadellAV, et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature. 2017; 542(7642):475-478.

[50]

BatistaPJ, Molinie B, WangJ, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014; 15(6):707-719.

[51]

YuG, WangLG, HanY, HeQY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012; 16(5):284-287.

[52]

HaoY, HaoS, Andersen-NissenE, et al. Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13):3573-3587.e29.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/