mRNA isoform switches during mouse zygotic genome activation
Fan Li, Najmeh Karimi, Siqi Wang, Tianshi Pan, Jingxi Dong, Xin Wang, Sinan Ma, Qingtong Shan, Chao Liu, Ying Zhang, Wei Li, Guihai Feng
mRNA isoform switches during mouse zygotic genome activation
[1] |
Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell. 2017;42(4):316-332.
|
[2] |
Schulz KN, Harrison MM. Mechanisms regulating zygotic genome activation. Nat Rev Genet. 2019;20(4):221-234.
|
[3] |
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018;19(7):436-450.
|
[4] |
Abe KI, Funaya S, Tsukioka D, et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci U S A. 2018;115(29):E6780-E6788.
|
[5] |
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet. 2021;53(6):925-934.
|
[6] |
Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18(7):437-451.
|
[7] |
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022;23(11):697-710.
|
[8] |
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013;14(3):153-165.
|
[9] |
Feng G, Tong M, Xia B, et al. Ubiquitously expressed genes participate in cell-specific functions via alternative promoter usage. EMBO Rep. 2016;17(9):1304-1313.
|
[10] |
Nepal C, Andersen JB. Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes. Nat Commun. 2023;14(1):2712.
|
[11] |
Wang J, Zhang S, Lu H, Xu H. Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun. 2022;13(1):2714.
|
[12] |
Hamaya Y, Suzuki A, Suzuki Y, Tsuchihara K, Yamashita R. Classification and characterization of alternative promoters in 26 lung adenocarcinoma cell lines. Jpn J Clin Oncol. 2023;53(2):97-104.
|
[13] |
Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res. 2018;8(12):2346-2358.
|
[14] |
Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16-26.
|
[15] |
Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291-323.
|
[16] |
Li ZK, Wang LY, Wang LB, et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell. 2018;23(5):665.e4-676.e4.
|
[17] |
Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9(2):129-140.
|
[18] |
Xu Q, Xie W. Epigenome in early mammalian development: inheritance reprogramming and establishment. Trends Cell Biol. 2018;28(3):237-253.
|
[19] |
Aanes H, Østrup O, Andersen IS, et al. Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish. BMC Genomics. 2013;14:331.
|
[20] |
Torre D, Francoeur NJ, Kalma Y, et al. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun. 2023;14(1):6902.
|
[21] |
Xing Y, Yang W, Liu G, et al. Dynamic alternative splicing during mouse preimplantation embryo development. Front Bioeng Biotechnol. 2020;8:35.
|
[22] |
Chen J, He Y, Chen L, et al. Differential alternative splicing landscape identifies potentially functional RNA binding proteins in early embryonic development in mammals. iScience. 2024;27:109104.
|
[23] |
Gabut M, Samavarchi-Tehrani P, Wang X, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011;147(1):132-146.
|
[24] |
Leng L, Sun J, Huang J, et al. Single-cell transcriptome analysis of uniparental embryos reveals parent-of-origin effects on human preimplantation development. Cell Stem Cell. 2019;25(5):697.e6-697.e712.
|
[25] |
Zito A, Roberts AL, Visconti A, et al. Escape from X-inactivation in twins exhibits intra- and inter-individual variability across tissues and is heritable. PLoS Genet. 2023;19(2):e1010556.
|
[26] |
Trincado JL, Entizne JC, Hysenaj G, et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 2018;19(1):40.
|
[27] |
Shen S, Park JW, Lu ZX, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc Natl Acad Sci U S A. 2014;111(51):E5593-E5601.
|
[28] |
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013;2:188.
|
[29] |
Kim P, Yang M, Yiya K, Zhao W, Zhou X. ExonSkipDB: functional annotation of exon skipping event in human. Nucleic Acids Res. 2020;48(D1):D896-D907.
|
[30] |
Flemr M, Malik R, Franke V, et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155(4):807-816.
|
[31] |
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal. 2020;18(1):14.
|
[32] |
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance. 2020;3(4):e201900632.
|
[33] |
Buschauer R, Matsuo Y, Sugiyama T, et al. The Ccr4-not complex monitors the translating ribosome for codon optimality. Science. 2020;368(6488):eaay6912.
|
[34] |
Sha QQ, Zhu YZ, Li S, et al. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 2020;48(2):879-894.
|
[35] |
Galan A, Rodriguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol. 2012;47(6):556-568.
|
[36] |
Yang YW, Flynn RA, Chen Y, et al. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. Elife. 2014;3:e02046.
|
[37] |
Laptenko O, Shiff I, Freed-Pastor W, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 2015;57(6):1034-1046.
|
[38] |
Jin XL, O'Neill C. The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol Reprod. 2010;82(2):459-468.
|
[39] |
Yan L, Yang M, Guo H, et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131-1139.
|
[40] |
Yuan S, Zhan J, Zhang J, et al. Human zygotic genome activation is initiated from paternal genome. Cell Discov. 2023;9(1):13.
|
[41] |
Wang C, Liu X, Gao Y, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol. 2018;20(5):620-631.
|
/
〈 | 〉 |