Dendritic cell-targeted delivery of antigens using extracellular vesicles for anti-cancer immunotherapy

Xuan T. T. Dang, Cao Dai Phung, Claudine Ming Hui Lim, Migara Kavishka Jayasinghe, Jorgen Ang, Thai Tran, Herbert Schwarz, Minh T. N. Le

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (7) : e13622. DOI: 10.1111/cpr.13622
ORIGINAL ARTICLE

Dendritic cell-targeted delivery of antigens using extracellular vesicles for anti-cancer immunotherapy

Author information +
History +

Abstract

Neoantigen delivery using extracellular vesicles (EVs) has gained extensive interest in recent years. EVs derived from tumour cells or immune cells have been used to deliver tumour antigens or antitumor stimulation signals. However, potential DNA contamination from the host cell and the cost of large-scale EV production hinder their therapeutic applications in clinical settings. Here, we develop an antigen delivery platform for cancer vaccines from red blood cell-derived EVs (RBCEVs) targeting splenic DEC-205+ dendritic cells (DCs) to boost the antitumor effect. By loading ovalbumin (OVA) protein onto RBCEVs and delivering the protein to DCs, we were able to stimulate and present antigenic OVA peptide onto major histocompatibility complex (MHC) class I, subsequently priming activated antigen-reactive T cells. Importantly, targeted delivery of OVA using RBCEVs engineered with anti-DEC-205 antibody robustly enhanced antigen presentation of DCs and T cell activation. This platform is potentially useful for producing personalised cancer vaccines in clinical settings.

Cite this article

Download citation ▾
Xuan T. T. Dang, Cao Dai Phung, Claudine Ming Hui Lim, Migara Kavishka Jayasinghe, Jorgen Ang, Thai Tran, Herbert Schwarz, Minh T. N. Le. Dendritic cell-targeted delivery of antigens using extracellular vesicles for anti-cancer immunotherapy. Cell Proliferation, 2024, 57(7): e13622 https://doi.org/10.1111/cpr.13622

References

[1]
Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. JCO. 2015;33:2092-2099.
[2]
Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;1(124):109821.
[3]
Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021 Jun;21(6):360-378.
[4]
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. npj Vaccines. 2019;4(1):1-10.
[5]
Kartikasari AER, Prakash MD, Cox M, et al. Therapeutic cancer vaccines-T cell responses and epigenetic modulation. Front Immunol. 2018;9:3109.
[6]
Santos PM, Butterfield LH. Dendritic cell–based cancer vaccines. J Immunol. 2018 Jan 15;200(2):443-449.
[7]
Luo M, Samandi LZ, Wang Z, Chen ZJ, Gao J. Synthetic nanovaccines for immunotherapy. J Control Release. 2017 Oct;10(263):200-210.
[8]
Li Y, He X, Li Q, et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct Biotechnol J. 2020;18:2851-2859.
[9]
Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4(1):26316.
[10]
Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/−derived extracellular vesicles—a novel strategy for enhancement of the anti-tumor immune response. Front Pharmacol. 2019;10:1152.
[11]
Taghikhani A, Farzaneh F, Sharifzad F, Mardpour S, Ebrahimi M, Hassan ZM. Engineered tumor-derived extracellular vesicles: potentials in cancer immunotherapy. Front Immunol. 2020;11:221.
[12]
Liu W, Takahashi Y, Morishita M, Nishikawa M, Takakura Y. Development of CD40L-modified tumor small extracellular vesicles for effective induction of antitumor immune response. Nanomedicine. 2020;15(17):1641-1652.
[13]
Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol. 2021;15(6):1701-1714.
[14]
Usman WM, Pham TC, Kwok YY, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359.
[15]
Pham TC, Jayasinghe MK, Pham TT, et al. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J Extracell Vesicles. 2021;10(4):e12057.
[16]
Chen H, Jayasinghe MK, Yeo EYM, et al. CD33-targeting extracellular vesicles deliver antisense oligonucleotides against FLT3-ITD and miR-125b for specific treatment of acute myeloid leukaemia. Cell Prolif. 2022;e13255.
[17]
Jayasinghe MK, Pirisinu M, Yang Y, et al. Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics. 2022;12(7):3288-3315.
[18]
Peng B, Nguyen TM, Jayasinghe MK, et al. Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy. J Extracell Vesicles. 2022;11(4):e12187.
[19]
Yan H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-type lectin receptors for cancer immunity. Front Immunol. 2015;24(6):408.
[20]
Geijtenbeek TBH, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465-479.
[21]
Shrimpton RE, Butler M, Morel AS, Eren E, Hue SS, Ritter MA. CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol Immunol. 2009;46(6):1229-1239.
[22]
Birkholz K, Schwenkert M, Kellner C, et al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–restricted antigen presentation. Blood. 2010;116(13):2277-2285.
[23]
Bhardwaj N, Friedlander PA, Pavlick AC, et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat Can. 2020;1(12):1204-1217.
[24]
Kato M, McDonald KJ, Khan S, et al. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol. 2006;18(6):857-869.
[25]
Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375(6527):151-155.
[26]
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. Nanomedicine. 2019;16:267-277.
[27]
Phung CD, Tran TH, Nguyen HT, et al. Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J Control Release. 2021;10(338):211-223.
[28]
Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41(7):2718-2739.
[29]
Kastenmüller W, Kastenmüller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines—hope or hype?Nat Rev Immunol. 2014;14(10):705-711.
[30]
Höpken UE, Lehmann I, Droese J, Lipp M, Schüler T, Rehm A. The ratio between dendritic cells and T cells determines the outcome of their encounter: proliferation versus deletion. Eur J Immunol. 2005;35(10):2851-2863.
[31]
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment?Nat Rev Immunol. 2022;22(3):158-172.
[32]
Fernández-Delgado I, Calzada-Fraile D, Sánchez-Madrid F. Immune regulation by dendritic cell extracellular vesicles in cancer immunotherapy and vaccines. Cancer. 2020;12(12):3558.
[33]
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine. Cancer. 2019;11(12):1979.
[34]
Yuan Z, Kolluri KK, Gowers KH, Janes SM. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles. 2017;6(1):1265291.
[35]
Adlerz K, Patel D, Rowley J, Ng K, Ahsan T. Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Res. 2020;48:101978.
[36]
Lin YC, Boone M, Meuris L, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5(1):1-12.
[37]
Boquest AC, Shahdadfar A, Frønsdal K, et al. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell. 2005;16(3):1131-1141.
[38]
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357-1369.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/