Decoding human in vitro terminal erythropoiesis originating from umbilical cord blood mononuclear cells and pluripotent stem cells

Xiaoling Wang, Wei Zhang, Siqi Zhao, Hao Yan, Zijuan Xin, Tiantian Cui, Ruge Zang, Lingping Zhao, Haiyang Wang, Junnian Zhou, Xuan Li, Wen Yue, Jiafei Xi, Zhaojun Zhang, Xiangdong Fang, Xuetao Pei

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (7) : e13614. DOI: 10.1111/cpr.13614
ORIGINAL ARTICLE

Decoding human in vitro terminal erythropoiesis originating from umbilical cord blood mononuclear cells and pluripotent stem cells

Author information +
History +

Abstract

Ex vivo red blood cell (RBC) production generates unsatisfactory erythroid cells. A deep exploration into terminally differentiated cells is required to understand the impairments for RBC generation and the underlying mechanisms. Here, we mapped an atlas of terminally differentiated cells from umbilical cord blood mononuclear cells (UCBMN) and pluripotent stem cells (PSC) and observed their dynamic regulation of erythropoiesis at single-cell resolution. Interestingly, we detected a few progenitor cells and non-erythroid cells from both origins. In PSC-derived erythropoiesis (PSCE), the expression of haemoglobin switch regulators (BCL11A and ZBTB7A) were significantly absent, which could be the restraint for its adult globin expression. We also found that PSCE were less active in stress erythropoiesis than in UCBMN-derived erythropoiesis (UCBE), and explored an agonist of stress erythropoiesis gene, TRIB3, could enhance the expression of adult globin in PSCE. Compared with UCBE, there was a lower expression of epigenetic-related proteins (e.g., CASPASE 3 and UBE2O) and transcription factors (e.g., FOXO3 and TAL1) in PSCE, which might restrict PSCE's enucleation. Moreover, we characterized a subpopulation with high proliferation capacity marked by CD99high in colony-forming unit-erythroid cells. Inhibition of CD99 reduced the proliferation of PSC-derived cells and facilitated erythroid maturation. Furthermore, CD99–CD99 mediated the interaction between macrophages and erythroid cells, illustrating a mechanism by which macrophages participate in erythropoiesis. This study provided a reference for improving ex vivo RBC generation.

Cite this article

Download citation ▾
Xiaoling Wang, Wei Zhang, Siqi Zhao, Hao Yan, Zijuan Xin, Tiantian Cui, Ruge Zang, Lingping Zhao, Haiyang Wang, Junnian Zhou, Xuan Li, Wen Yue, Jiafei Xi, Zhaojun Zhang, Xiangdong Fang, Xuetao Pei. Decoding human in vitro terminal erythropoiesis originating from umbilical cord blood mononuclear cells and pluripotent stem cells. Cell Proliferation, 2024, 57(7): e13614 https://doi.org/10.1111/cpr.13614

References

[1]
Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5(10):1394-1405.
[2]
Wang L, Guan X, Wang H, et al. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation. Stem Cell Res Ther. 2017;8(1):169.
[3]
Rallapalli S, Guhathakurta S, Narayan S, Bishi DK, Balasubramanian V, Korrapati PS. Generation of clinical-grade red blood cells from human umbilical cord blood mononuclear cells. Cell Tissue Res. 2019;375(2):437-449.
[4]
Wang S, Zhao H, Zhang H, et al. Analyses of erythropoiesis from embryonic stem cell-CD34(+) and cord blood-CD34(+) cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell-erythroid cells. J Cell Mol Med. 2022;26(8):2404-2416.
[5]
Jacobsen SEW, Nerlov C. Haematopoiesis in the era of advanced single-cell technologies. Nat Cell Biol. 2019;21(1):2-8.
[6]
Buenrostro JD, Corces MR, Lareau CA, et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173(6):1535-1548.
[7]
Huang P, Zhao Y, Zhong J, et al. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells. Proc Natl Acad Sci U S A. 2020;117(23):12868-12876.
[8]
Qin J, Zhang J, Jiang J, et al. Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell. 2022;29(8):1229-1245.
[9]
Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246-3253.
[10]
Ng ES, Davis R, Stanley EG, Elefanty AG. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc. 2008;3(5):768-776.
[11]
Aibar S, Gonzalez-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083-1086.
[12]
Li J, Hale J, Bhagia P, et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood. 2014;124(24):3636-3645.
[13]
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163-172.
[14]
Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979-982.
[15]
Chen W, Paradkar PN, Li L, et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci U S A. 2009;106(38):16263-16268.
[16]
Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.
[17]
Hao S, Xiang J, Wu DC, et al. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche. Blood Adv. 2019;3(14):2205-2217.
[18]
Dev A, Asch R, Jachimowicz E, et al. Governing roles for Trib3 pseudokinase during stress erythropoiesis. Exp Hematol. 2017;49:48-55.
[19]
Schmitz I. Gadd45 proteins in immunity. Adv Exp Med Biol. 2013;793:51-68.
[20]
Hoffman B, Liebermann DA. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J Cell Physiol. 2009;218(1):26-31.
[21]
Gupta SK, Gupta M, Hoffman B, Liebermann DA. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene. 2006;25(40):5537-5546.
[22]
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 2013;14(7):1-15.
[23]
McGrath KE, Kingsley PD, Koniski AD, Porter RL, Bushnell TP, Palis J. Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood. 2008;111(4):2409-2417.
[24]
Nguyen AT, Prado MA, Schmidt PJ, et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science. 2017;357(6350):eaan0218.
[25]
Shi H, Yamamoto S, Sheng M, et al. ASXL1 plays an important role in erythropoiesis. Sci Rep. 2016;6:28789.
[26]
Liang R, Campreciós G, Kou Y, et al. A systems approach identifies essential FOXO3 functions at key steps of terminal erythropoiesis. PLoS Genet. 2015;11(10):e1005526.
[27]
Han SY, Lee EM, Kim S, Kwon AM, Baek EJ. Role of plasma gelsolin protein in the final stage of erythropoiesis and in correction of erythroid dysplasia in vitro. Int J Mol Sci. 2020;21(19):7132.
[28]
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Exp Hematol. 2021;95:13-22.
[29]
Cantú I, Philipsen S. Flicking the switch: adult hemoglobin expression in erythroid cells derived from cord blood and human induced pluripotent stem cells. Haematologica. 2014;99(11):1647-1649.
[30]
Sankaran VG, Xu J, Ragoczy T, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093-1097.
[31]
Mannion AJ, Odell AF, Taylor A, Jones PF, Cook GP. Tumour cell CD99 regulates transendothelial migration via CDC42 and Actin remodelling. J Cell Sci. 2021;134(15):jcs240135.
[32]
Angelini DF, Ottone T, Guerrera G, et al. A leukemia-associated CD34/CD123/CD25/CD99+ immunophenotype identifies FLT3-mutated clones in acute myeloid leukemia. Clin Cancer Res. 2015;21(17):3977-3985.
[33]
Feng XD, Zhu JQ, Zhou JH, et al. Hypoxia-inducible factor-1α-mediated upregulation of CD99 promotes the proliferation of placental mesenchymal stem cells by regulating ERK1/2. World J Stem Cells. 2021;13(4):317-330.
[34]
Vaikari VP, Yang J, Akhtari M, Alachkar H. Functional analysis of CD99 upregulation in acute myeloid leukemia. Blood. 2018;132(Supplement 1):5129.
[35]
Imbert AM, Belaaloui G, Bardin F, Tonnelle C, Lopez M, Chabannon C. CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration. Blood. 2006;108(8):2578-2586.
[36]
Jacobsen RN, Perkins AC, Levesque JP. Macrophages and regulation of erythropoiesis. Curr Opin Hematol. 2015;22(3):212-219.
[37]
Javan GT, Salhotra A, Finley SJ, Soni S. Erythroblast macrophage protein (EMP): past, present, and future. Eur J Haematol. 2018;100(1):3-9.
[38]
Gao S, Shi Q, Zhang Y, et al. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 2022;32(1):38-53.
[39]
Lopez-Yrigoyen M, Yang CT, Fidanza A, et al. Genetic programming of macrophages generates an in vitro model for the human erythroid Island niche. Nat Commun. 2019;10(1):881.
[40]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.
[41]
Chow A, Huggins M, Ahmed J, et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429-436.
[42]
Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood. 2019;133(11):1222-1232.
[43]
Luo Y, Shao L, Chang J, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Adv. 2018;2(8):859-870.
[44]
Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258-6268.
[45]
Sathyanarayana P, Dev A, Fang J, et al. EPO receptor circuits for primary erythroblast survival. Blood. 2008;111(11):5390-5399.
[46]
Elahi S, Mashhouri S. Immunological consequences of extramedullary erythropoiesis: immunoregulatory functions of CD71(+) erythroid cells. Haematologica. 2020;105(6):1478-1483.
[47]
Elahi S. Neglected cells: immunomodulatory roles of CD71(+) erythroid cells. Trends Immunol. 2019;40(3):181-185.
[48]
Hsieh H-H, Yao H, Ma Y, et al. Epo-IGF1R crosstalk expands stress-specific progenitors in regenerative erythropoiesis and myeloproliferative neoplasm. Blood. 2022;140:2371-2384.
[49]
Heshusius S, Heideveld E, Burger P, et al. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells. Blood Adv. 2019;3(21):3337-3350.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/