Apoptotic vesicles derived from human red blood cells promote bone regeneration via carbonic anhydrase 1

Yuzi Shao, Yuhe Jiang, Kunkun Yang, Yuan Zhu, Yunsong Liu, Ping Zhang, Longwei Lv, Xiao Zhang, Yongsheng Zhou

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (2) : e13547. DOI: 10.1111/cpr.13547
ORIGINAL ARTICLE

Apoptotic vesicles derived from human red blood cells promote bone regeneration via carbonic anhydrase 1

Author information +
History +

Abstract

Apoptotic vesicles (apoVs) are nanoscale vesicles derived from billions of apoptotic cells involved in the maintenance of the human body's homeostasis. Previous researches have shown that some apoVs, such as those derived from mesenchymal stem cells, contribute to bone formation. However, those apoVs cannot be extracted from patients in large quantities, and cell expansion is needed before apoV isolation, which limits their clinical translation. Mature RBCs, which have no nuclei or genetic material, are easy to obtain, showing high biological safety as a source of extracellular vesicles (EVs). Previous studies have demonstrated that RBC-derived EVs have multiple biological functions, but it is unknown whether RBCs produce apoVs and what effect these apoVs have on bone regeneration. In this study, we isolated and characterized RBC-derived apoVs (RBC-apoVs) from human venous blood and investigated their role in the osteogenesis of human bone mesenchymal stem cells (hBMSCs). We showed that RBCs could produce RBC-apoVs that expressed both general apoVs markers and RBC markers. RBC-apoVs significantly promoted osteogenesis of hBMSCs and enhanced bone regeneration in rat calvarial defects. Mechanistically, RBC-apoVs regulated osteogenesis by transferring carbonic anhydrase 1 (CA1) into hBMSCs and activating the P38 MAPK pathway. Our results indicated that RBC-apoVs could deliver functional molecules from RBCs to hBMSCs and promote bone regeneration, pointing to possible therapeutic use in bone tissue engineering.

Cite this article

Download citation ▾
Yuzi Shao, Yuhe Jiang, Kunkun Yang, Yuan Zhu, Yunsong Liu, Ping Zhang, Longwei Lv, Xiao Zhang, Yongsheng Zhou. Apoptotic vesicles derived from human red blood cells promote bone regeneration via carbonic anhydrase 1. Cell Proliferation, 2024, 57(2): e13547 https://doi.org/10.1111/cpr.13547

References

[1]
Li JJ, Ebied M, Xu J, Zreiqat H. Current approaches to bone tissue engineering: the interface between biology and engineering. Adv Healthc Mater. 2018;7(6):1701061.
[2]
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell Secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852.
[3]
Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 2021;54(1):e12956.
[4]
Zhang Y, Hao Z, Wang P, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 2019;52(2):e12570.
[5]
Chen S, Tang Y, Liu Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52(5):e12669.
[6]
Li WY, Liu YS, Zhang P, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces. 2018;10(6):5240-5254.
[7]
Sheng CH, Guo XD, Wan ZQ, et al. Exosomes derived from human adipose-derived stem cells ameliorate osteoporosis through miR-335-3p/Aplnr axis. Nano Res. 2022;15(10):9135-9148.
[8]
Cui YZ, Luan J, Li HY, Zhou XY, Han JX. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590(1):185-192.
[9]
Qin YW, Peng YZ, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem. 2017;292(26):11021-11033.
[10]
Zhang JY, Liu XL, Li HY, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136.
[11]
Huang J, Li Y, Chen G. Extracellular vesicles in Oral and craniofacial diseases: from basic knowledge to clinical perspectives. Chin J Dent Res. 2021;24(4):213-217.
[12]
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486.
[13]
Grant LR, Milic I, Devitt A. Apoptotic cell-derived extracellular vesicles: structure-function relationships. Biochem Soc Trans. 2019;47(2):509-516.
[14]
Phan TK, Ozkocak DC, Poon IKH. Unleashing the therapeutic potential of apoptotic bodies. Biochem Soc Trans. 2020;48(5):2079-2088.
[15]
Zhang X, Tang JX, Kou XX, et al. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J Extracell Vesicles. 2022;11(7):e12240.
[16]
Zhu Y, Zhang X, Yang K, et al. Macrophage-derived apoptotic vesicles regulate fate commitment of mesenchymal stem cells via miR155. Stem Cell Res Ther. 2022;13(1):323.
[17]
Zheng CX, Sui BD, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles. 2021;10(7):e12109.
[18]
Liu DW, Kou XX, Chen C, et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018;28(9):918-933.
[19]
Zhu Y, Yang K, Cheng Y, et al. Apoptotic vesicles regulate bone metabolism via the miR1324/SNX14/SMAD1/5 signaling Axis. Small. 2023;19(16):2205813.
[20]
Phan TK, Fonseka P, Tixeira R, et al. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size. Proteomics. 2021;21(13–14):2000097.
[21]
D'Alessandro A, Zolla L. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? Expert Rev Proteomics. 2017;14(3):243-252.
[22]
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2020;22(1):153.
[23]
Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Osmotic shock-induced suicidal death of erythrocytes. Acta Physiol. 2006;187(1–2):191-198.
[24]
Berg CP, Engels IH, Rothbart A, et al. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001;8(12):1197-1206.
[25]
Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cell. 2022;11(3):503.
[26]
Kong YJ, Tian X, He R, et al. The accumulation of exosome-associated microRNA-1246 and microRNA-150-3p in human red blood cell suspensions. J Transl Med. 2021;19(1):225.
[27]
Prudent M, Delobel J, Hübner A, Benay C, Lion N, Tissot J-D. Proteomics of stored red blood cell membrane and storage-induced microvesicles reveals the association of flotillin-2 with band 3 complexes. Front Physiol. 2018;9:421.
[28]
Hashemi Tayer A, Amirizadeh N, Ahmadinejad M, Nikougoftar M, Deyhim MR, Zolfaghari S. Procoagulant activity of red blood cell-derived microvesicles during red cell storage. Transfus Med Hemother. 2019;46(4):224-230.
[29]
Hebbel RP, Key NS. Microparticles in sickle cell anaemia: promise and pitfalls. Br J Haematol. 2016;174(1):16-29.
[30]
Danesh A, Inglis HC, Jackman RP, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687-696.
[31]
Usman WM, Pham TC, Kwok YY, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359.
[32]
Villeval JL, Testa U, Vinci G, et al. Carbonic anhydrase I is an early specific marker of normal human erythroid differentiation. Blood. 1985;66(5):1162-1170.
[33]
Gahmberg CG, Ekblom M, Andersson LC. Differentiation of human erythroid cells is associated with increased O-glycosylation of the major sialoglycoprotein, glycophorin a. Proc Natl Acad Sci. 1984;81(21):6752-6756.
[34]
Poole J. Red cell antigens on band 3 and glycophorin a. Blood Rev. 2000;14(1):31-43.
[35]
Chang XT, Zheng YB, Yang QR, et al. Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res Ther. 2012;14(4):R176.
[36]
Huang HB, Zhu JJ, Fan LP, et al. MicroRNA profiling of exosomes derived from red blood cell units: implications in transfusion-related immunomodulation. Biomed Res Int. 2019;2019:2045915.
[37]
Sun LP, Fan FY, Li RL, et al. Different erythrocyte microRNA profiles in low- and high-altitude individuals. Front Physiol. 2018;9:1099.
[38]
Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-257.
[39]
Al Mamun Bhuyan A, Wagner T, Cao H, Lang F. Triggering of suicidal erythrocyte death by gefitinib. Cell Physiol Biochem. 2017;41(4):1697-1708.
[40]
Qadri SM, Mahmud H, Föller M, Lang F. Thymoquinone-induced suicidal erythrocyte death. Food Chem Toxicol. 2009;47(7):1545-1549.
[41]
Rho J, Chung J, Im H, et al. Magnetic nanosensor for detection and profiling of erythrocyte-derived microvesicles. ACS Nano. 2013;7(12):11227-11233.
[42]
Kugeratski FG, Hodge K, Lilla S, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol. 2021;23(6):631-641.
[43]
Poon IKH, Parkes MAF, Jiang L, et al. Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J Extracell Vesicles. 2019;8(1):1608786.
[44]
Qu Y, He YF, Meng BW, et al. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater. 2022;149:258-272.
[45]
Marolt D, Knezevic M, Vunjak-Novakovic G. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010;1(2):10.
[46]
Li M, Xing X, Huang H, et al. BMSC-derived ApoEVs promote craniofacial bone repair via ROS/JNK signaling. J Dent Res. 2022;101(6):714-723.
[47]
Ma QY, Liang MM, Limjunyawong N, et al. Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics. 2020;10(15):6825-6838.
[48]
Ma QY, Liang MM, Wu YT, et al. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem. 2019;294(29):11240-11247.
[49]
Ramasamy SK, Kusumbe AP, Schiller M, et al. Blood flow controls bone vascular function and osteogenesis. Nat Commun. 2016;7(1):13601.
[50]
Li SZ, An L, Ferraris Araneta M, Victorino M, Johnson CS, Shen J. Carbonic anhydrase activity in the frontal lobe of human brain. NMR Biomed. 2021;34(6):e4501.
[51]
Adeva-Andany MM, Fernández-Fernández C, Sánchez-Bello R, Donapetry-García C, Martínez-Rodríguez J. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans. Atherosclerosis. 2015;241(1):183-191.
[52]
Yoshimoto M, Walde P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol. 2018;34(10):151.
[53]
Wang XH, Schröder HC, Schlossmacher U, et al. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int. 2014;94(5):495-509.
[54]
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;17(10):839-849.
[55]
Li Z, Liu XN, Zhu Y, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates osteogenic differentiation by modulating AMPK/ULK1-dependent autophagy. Stem Cells. 2019;37(12):1542-1555.
[56]
Peng L, Li Y, Li XW, et al. Extracellular vesicles derived from intermittent hypoxia–treated red blood cells impair endothelial function through regulating eNOS phosphorylation and ET-1 expression. Cardiovasc Drugs Ther. 2021;35(5):901-913.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/