Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs

Kang Wang , Chingchun Ho , Xiangyu Li , Jianfeng Hou , Qipei Luo , Jiahong Wu , Yuxin Yang , Xinchun Zhang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (2) : e13746

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (2) : e13746 DOI: 10.1002/cpr.13746
ORIGINAL ARTICLE

Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs

Author information +
History +
PDF

Abstract

The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.

Cite this article

Download citation ▾
Kang Wang, Chingchun Ho, Xiangyu Li, Jianfeng Hou, Qipei Luo, Jiahong Wu, Yuxin Yang, Xinchun Zhang. Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs. Cell Proliferation, 2025, 58(2): e13746 DOI:10.1002/cpr.13746

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CooperC, Campion G, MeltonLJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporosis Int. 1992;2(6):285-289.

[2]

JohnellO, KanisJA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int. 2006;17(12):1726-1733.

[3]

KusumbeAP, Ramasamy SK, AdamsRH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323-328.

[4]

XieH, CuiZ, WangL, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20(11):1270-1278.

[5]

ZhouS, Greenberger JS, EpperlyMW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7(3):335-343.

[6]

LacolleyP, Regnault V, SegersP, LaurentS. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev. 2017;97(4):1555-1617.

[7]

RahmatiM, Nalesso G, MobasheriA, MozafariM. Aging and osteoarthritis: central role of the extracellular matrix. Ageing Res Rev. 2017;40:20-30.

[8]

ZhaoY, SimonM, SeluanovA, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol. 2023;23(2):75-89.

[9]

HeS, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000-1011.

[10]

XiaoH, Jedrychowski MP, SchweppeDK, et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell. 2020;180(5):968-983.e24.

[11]

ZhangC, LiH, LiJ, HuJ, YangK, Tao L. Oxidative stress: a common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother. 2023;163:114834.

[12]

López-OtínC, BlascoMA, Partridge L, SerranoM, KroemerG. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243-278.

[13]

BrunetA, Goodell MA, RandoTA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24(1):45-62.

[14]

WengZ, WangY, OuchiT, et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med. 2022;11(4):356-371.

[15]

SaraswathibhatlaA, Indana D, ChaudhuriO. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516.

[16]

ShiH, ZhouK, WangM, et al. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics. 2023;13(10):3245-3275.

[17]

HiguchiA, LingQD, ChangY, Hsu ST, UmezawaA. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev. 2013;113(5):3297-3328.

[18]

EnglerAJ, SenS, SweeneyHL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677-689.

[19]

RajanTS, Scionti D, DiomedeF, et al. Prolonged expansion induces spontaneous neural progenitor differentiation from human gingiva-derived mesenchymal stem cells. Cell Reprogram. 2017;19(6):389-401.

[20]

DiomedeF, RajanTS, D’AuroraM, et al. Stemness characteristics of periodontal ligament stem cells from donors and multiple sclerosis patients: a comparative study. Stem Cells Int. 2017;2017:1606125.

[21]

KauppilaTES, Kauppila JHK, LarssonN-G. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25(1):57-71.

[22]

SmithKA, WaypaGB, SchumackerPT. Redox signaling during hypoxia in mammalian cells. Redox Biol. 2017;13:228-234.

[23]

NunnariJ, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145-1159.

[24]

KashatusDF, LimKH, BradyDC, Pershing NLK, CoxAD, CounterCM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol. 2011;13(9):1108-1115.

[25]

YuSB, Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol. 2018;430(21):3922-3941.

[26]

ChanDC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15:235-259.

[27]

WongYC, Ysselstein D, KraincD. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018;554(7692):382-386.

[28]

WongYC, KimS, PengW, Krainc D. Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis. Trends Cell Biol. 2019;29(6):500-513.

[29]

KleeleT, ReyT, WinterJ, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593(7859):435-439.

[30]

FerrucciL, FabbriE. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505-522.

[31]

CowanCM, ShiYY, AalamiOO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22(5):560-567.

[32]

YaoS, PangM, WangY, et al. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 2023;67:102871.

[33]

GaoY, ChiY, ChenY, et al. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat Commun. 2023;14(1):4373.

[34]

HuangX, FanJ, LiL, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol. 2018;36(5):451-459.

[35]

ZhaoW, ZhaoS, LiL, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol. 2022;40(4):606-617.

[36]

HsiehWT, LiuYS, LeeYH, Rimando MG, LinKH, LeeOK. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Acta Biomater. 2016;32:210-222.

[37]

NaJ, YangZ, ShiQ, et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater. 2024;35:549-563.

[38]

QiuK, ZouW, FangH, et al. Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts. Nat Commun. 2022;13(1):4303.

[39]

PuJ, Guardia CM, Keren-KaplanT, BonifacinoJS. Mechanisms and functions of lysosome positioning. J Cell Sci. 2016;129(23):4329-4339.

[40]

ZhengP, ObaraCJ, SzczesnaE, et al. ER proteins decipher the tubulin code to regulate organelle distribution. Nature. 2022;601(7891):132-138.

[41]

WangB, HeW, ProssedaPP, et al. OCRL regulates lysosome positioning and mTORC1 activity through SSX2IP-mediated microtubule anchoring. EMBO Rep. 2021;22(7):e52173.

[42]

Correia-MeloC, Marques FD, AndersonR, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35(7):724-742.

[43]

GiorgiC, MarchiS, PintonP. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713-730.

[44]

SebastiánD, Palacín M, ZorzanoA. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med. 2017;23(3):201-215.

[45]

KhachoM, ClarkA, SvobodaDS, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell. 2016;19(2):232-247.

[46]

LiQ, GaoZ, ChenY, Guan MX. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell. 2017;8(6):439-445.

[47]

LiA, GaoM, JiangW, Qin Y, GongG. Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Front Cell Dev Biol. 2020;8:584800.

[48]

ZhangJ, NuebelE, DaleyGQ, Koehler CM, TeitellMA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589-595.

[49]

ParkJT, LeeYS, ChoKA, Park SC. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Res Rev. 2018;47:176-182.

[50]

CuiM, YamanoK, YamamotoK, et al. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci USA. 2024;121(2):e2306454120.

[51]

WangS, LongH, HouL, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 2023;8(1):304.

[52]

KönigT, NolteH, AaltonenMJ, et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat Cell Biol. 2021;23(12):1271-1286.

[53]

Jiménez-LoygorriJI, Villarejo-ZoriB, Viedma-Poyatos Á, et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat Commun. 2024;15(1):830.

[54]

GuoY, GuanT, YuQ, et al. ALS-linked SOD1 mutations impair mitochondrial-derived vesicle formation and accelerate aging. Redox Biol. 2024;69:102972.

[55]

HaoT, YuJ, WuZ, et al. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat Commun. 2023;14(1):4105.

[56]

KimS, WongYC, GaoF, KraincD. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12(1):1807.

[57]

PengW, Schröder LF, SongP, WongYC, KraincD. Parkin regulates amino acid homeostasis at mitochondria-lysosome (M/L) contact sites in Parkinson’s disease. Sci Adv. 2023;9(29):eadh3347.

[58]

PengW, WongYC, KraincD. Mitochondria-lysosome contacts regulate mitochondrial Ca(2+) dynamics via lysosomal TRPML1. Proc Natl Acad Sci USA. 2020;117(32):19266-19275.

[59]

ZhengC, ChenJ, LiuS, JinY. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. 2019;11(3):23.

[60]

LiZ, YueM, LiuX, et al. The PCK2-glycolysis axis assists three-dimensional-stiffness maintaining stem cell osteogenesis. Bioact Mater. 2022;18:492-506.

[61]

ZhangX, CaoD, XuL, et al. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell. 2023;30(4):378-395.e8.

[62]

OgleME, DoronG, LevyMJ, Temenoff JS. Hydrogel culture surface stiffness modulates mesenchymal stromal cell Secretome and alters senescence. Tissue Eng Part A. 2020;26(23–24):1259-1271.

[63]

ŠimoliūnasE, IvanauskienėI, Bagdzevičiūtė L, RinkūnaitėI, AlksnėM, BaltriukienėD. Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radic Biol Med. 2021;169:62-73.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/