Pyroptotic macrophages induce disruption of glutamate metabolism in periodontal ligament stem cells contributing to their compromised osteogenic potential

Li-Juan Sun , Hong-Lei Qu , Xiao-Tao He , Bei-Min Tian , Rui-Xin Wu , Yuan Yin , Jie-Kang Zou , Hai-Hua Sun , Xuan Li , Fa-Ming Chen

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13663

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13663 DOI: 10.1002/cpr.13663
ORIGINAL ARTICLE

Pyroptotic macrophages induce disruption of glutamate metabolism in periodontal ligament stem cells contributing to their compromised osteogenic potential

Author information +
History +
PDF

Abstract

Macrophage pyroptosis is of key importance to host defence against pathogen infections and may participate in the progression and recovery of periodontitis. However, the role of pyroptotic macrophages in regulating periodontal ligament stem cells (PDLSCs), the main cell source for periodontium renewal, remains unclear. First, we found that macrophage pyroptosis were enriched in gingiva tissues from periodontitis patients compared with those of healthy people through immunofluorescence. Then the effects of pyroptotic macrophages on the PDLSC osteogenic differentiation were investigated in a conditioned medium (CM)-based coculture system in vitro. CM derived from pyroptotic macrophages inhibited the osteogenic differentiation-related gene and protein levels, ALP activity and mineralized nodule formation of PDLSCs. The osteogenic inhibition of CM was alleviated when pyroptosis was inhibited by VX765. Further, untargeted metabolomics showed that glutamate limitation may be the underlying mechanism. However, exogenous glutamate supplementation aggravated the CM-inhibited osteogenic differentiation of PDLSCs. Moreover, CM increased extracellular glutamate and decreased intracellular glutamate levels of PDLSCs, and enhanced the gene and protein expression levels of system xc (a cystine/glutamate antiporter). After adding cystine to CM-based incubation, the compromised osteogenic potency of PDLSCs was rescued. Our data suggest that macrophage pyroptosis is related to the inflammatory lesions of periodontitis. Either pharmacological inhibition of macrophage pyroptosis or nutritional supplements to PDLSCs, can rescue the compromised osteogenic potency caused by pyroptotic macrophages.

Cite this article

Download citation ▾
Li-Juan Sun, Hong-Lei Qu, Xiao-Tao He, Bei-Min Tian, Rui-Xin Wu, Yuan Yin, Jie-Kang Zou, Hai-Hua Sun, Xuan Li, Fa-Ming Chen. Pyroptotic macrophages induce disruption of glutamate metabolism in periodontal ligament stem cells contributing to their compromised osteogenic potential. Cell Proliferation, 2024, 57(10): e13663 DOI:10.1002/cpr.13663

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KinaneDF, Stathopoulou PG, PapapanouPN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.

[2]

HussainSB, Botelho J, MachadoV, et al. Is there a bidirectional association between rheumatoid arthritis and periodontitis? A systematic review and meta-analysis. Semin Arthritis Rheum. 2020;50(3):414-422.

[3]

Muñoz AguileraE, Suvan J, ButiJ, et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res. 2020;116(1):28-39.

[4]

TeeuwWJ, GerdesVE, LoosBG. Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):421-427.

[5]

ChenFM, WuLA, ZhangM, Zhang R, SunHH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32(12):3189-3209.

[6]

FuJ, WangY, JiangY, Du J, XuJ, LiuY. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12(1):377.

[7]

HanY, LiX, ZhangY, Han Y, ChangF, DingJ. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.

[8]

VaquetteC, Saifzadeh S, FaragA, HutmacherDW, Ivanovski S. Periodontal tissue engineering with a multiphasic construct and cell sheets. J Dent Res. 2019;98(6):673-681.

[9]

MenicaninD, MrozikKM, WadaN, et al. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev. 2014;23(9):1001-1011.

[10]

TassiSA, SergioNZ, MisawaMYO, Villar CC. Efficacy of stem cells on periodontal regeneration: systematic review of pre-clinical studies. J Periodontal Res. 2017;52(5):793-812.

[11]

ChenFM, GaoLN, TianBM, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther. 2016;7:33.

[12]

HoangDM, PhamPT, BachTQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272.

[13]

BogdanowiczDR, LuHH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci. 2017;1410(1):3-25.

[14]

MerimiM, El-Majzoub R, LagneauxL, et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front Cell Dev Biol. 2021;9:661532.

[15]

SilvaLHA, Antunes MA, Dos SantosCC, WeissDJ, CruzFF, RoccoPRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45.

[16]

ZhouLN, BiCS, GaoLN, An Y, ChenF, ChenFM. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019;25(1):265-273.

[17]

HeXT, LiX, YinY, WuRX, XuXY, ChenFM. The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells. J Cell Mol Med. 2018;22(2):1302-1315.

[18]

LiX, HeXT, KongDQ, et al. M2 macrophages enhance the cementoblastic differentiation of periodontal ligament stem cells via the Akt and JNK pathways. Stem Cells. 2019;37(12):1567-1580.

[19]

MedinaCB, Mehrotra P, ArandjelovicS, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;580(7801):130-135.

[20]

LiuX, Lieberman J. A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. Adv Immunol. 2017;135:81-117.

[21]

ManSM, KarkiR, KannegantiTD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75.

[22]

XiaS, Hollingsworth LR, WuH. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb Perspect Biol. 2020;12(3):a036400.

[23]

JorgensenI, MiaoEA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130-142.

[24]

ShiJ, GaoW, ShaoF. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245-254.

[25]

RaoZ, ZhuY, YangP, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329.

[26]

ZhengX, ChenW, GongF, Chen Y, ChenE. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front Immunol. 2021;12:711939.

[27]

ChenQ, LiuX, WangD, et al. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front Cell Dev Biol. 2021;9:663037.

[28]

García-HernándezAL, Muñoz-SaavedraÁE, González-AlvaP, et al. Upregulation of proteins of the NLRP3 inflammasome in patients with periodontitis and uncontrolled type 2 diabetes. Oral Dis. 2019;25(2):596-608.

[29]

YamaguchiY, Kurita-Ochiai T, KobayashiR, SuzukiT, AndoT. Regulation of the NLRP3 inflammasome in porphyromonas gingivalis-accelerated periodontal disease. Inflamm Res. 2017;66(1):59-65.

[30]

LiY, LingJ, JiangQ. Inflammasomes in alveolar bone loss. Front Immunol. 2021;12:691013.

[31]

ZhaoP, YueZ, NieL, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates periodontal inflamm-aging. J Clin Periodontol. 2021;48(10):1379-1392.

[32]

MuendleinHI, JettonD, ConnollyWM, et al. cFLIP(L) protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science. 2020;367(6484):1379-1384.

[33]

MaC, YangD, WangB, et al. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Sci Adv. 2020;6(21):eaaz6717.

[34]

Shapouri-MoghaddamA, Mohammadian S, VaziniH, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440.

[35]

PanigrahyD, Gilligan MM, SerhanCN, KashfiK. Resolution of inflammation: an organizing principle in biology and medicine. Pharmacol Ther. 2021;227:107879.

[36]

ChenHW, ZhouW, LiaoY, Hu SC, ChenTL, SongZC. Analysis of metabolic profiles of generalized aggressive periodontitis. J Periodontal Res. 2018;53(5):894-901.

[37]

KuboniwaM, Sakanaka A, HashinoE, BambaT, Fukusaki E, AmanoA. Prediction of periodontal inflammation via metabolic profiling of saliva. J Dent Res. 2016;95(12):1381-1386.

[38]

CatonJG, Armitage G, BerglundhT, et al. A new classification scheme for periodontal and peri-implant diseases and conditions – Introduction and key changes from the 1999 classification. J Periodontol. 2018;89(Suppl 1):S1-S8.

[39]

TonettiMS, Greenwell H, KornmanKS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018;89(Suppl 1):S159-S172.

[40]

ZhangJ, AnY, GaoLN, Zhang YJ, JinY, ChenFM. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials. 2012;33(29):6974-6986.

[41]

DominiciM, Le Blanc K, MuellerI, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-317.

[42]

ViswanathanS, ShiY, GalipeauJ, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019-1024.

[43]

ZhangYL, LiuF, LiZB, et al. Metformin combats high glucose-induced damage to the osteogenic differentiation of human periodontal ligament stem cells via inhibition of the NPR3-mediated MAPK pathway. Stem Cell Res Ther. 2022;13(1):305.

[44]

ZhouH, LiX, YinY, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth. Stem Cell Res Ther. 2020;11(1):110.

[45]

SeidlitzEP, SharmaMK, SinghG. Extracellular glutamate alters mature osteoclast and osteoblast functions. Can J Physiol Pharmacol. 2010;88(9):929-936.

[46]

Takarada-IemataM, Takarada T, NakamuraY, NakataniE, HoriO, YonedaY. Glutamate preferentially suppresses osteoblastogenesis than adipogenesis through the cystine/glutamate antiporter in mesenchymal stem cells. J Cell Physiol. 2011;226(3):652-665.

[47]

KesavardhanaS, Malireddi RKS, KannegantiTD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020;38:567-595.

[48]

MaoCY, WangYG, ZhangX, Zheng XY, TangTT, LuEY. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways. Cell Death Dis. 2016;7(7):e2296.

[49]

SagerHB, HeidtT, HulsmansM, et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation. 2015;132(20):1880-1890.

[50]

VogelS, Börger V, PetersC, et al. Necrotic cell-derived high mobility group box 1 attracts antigen-presenting cells but inhibits hepatocyte growth factor-mediated tropism of mesenchymal stem cells for apoptotic cell death. Cell Death Differ. 2015;22(7):1219-1230.

[51]

HajishengallisG, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000. 2017;75(1):116-151.

[52]

Fernandes-AlnemriT, Wu J, YuJW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590-1604.

[53]

PlatnichJM, ChungH, LauA, et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin d to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 2018;25(6):1525-1536.e7.

[54]

RobinsonN, Ganesan R, HegedűsC, KovácsK, KuferTA, VirágL. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019;26:101239.

[55]

HeWT, WanH, HuL, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285-1298.

[56]

WuD, ZhuX, AoJ, SongE, SongY. Delivery of ultrasmall nanoparticles to the cytosolic compartment of pyroptotic J774A.1 macrophages via GSDMD(Nterm) membrane pores. ACS Appl Mater Interfaces. 2021;13(43):50823-50835.

[57]

FrankD, VinceJE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99-114.

[58]

JiaoY, ZhangT, ZhangC, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356.

[59]

LiN, ChenJ, GengC, et al. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discov. 2022;8(1):90.

[60]

SicaA, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-795.

[61]

Ben-SassonSZ, HoggA, Hu-LiJ, et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med. 2013;210(3):491-502.

[62]

DuT, GaoJ, LiP, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;11(8):e492.

RIGHTS & PERMISSIONS

2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/