Liquid–liquid phase separation of microtubule-binding proteins in the regulation of spindle assembly

Shuang Sun , Yang Yang , Jun Zhou , Peiwei Liu

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13649

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13649 DOI: 10.1002/cpr.13649
REVIEW

Liquid–liquid phase separation of microtubule-binding proteins in the regulation of spindle assembly

Author information +
History +
PDF

Abstract

Cell division is a highly regulated process essential for the accurate segregation of chromosomes. Central to this process is the assembly of a bipolar mitotic spindle, a highly dynamic microtubule (MT)-based structure responsible for chromosome movement. The nucleation and dynamics of MTs are intricately regulated by MT-binding proteins. Over the recent years, various MT-binding proteins have been reported to undergo liquid–liquid phase separation, forming either single- or multi-component condensates on MTs. Herein, we provide a comprehensive summary of the phase separation characteristics of these proteins. We underscore their critical roles in MT nucleation, spindle assembly and kinetochore-MT attachment during the cell division process. Furthermore, we discuss the current challenges and various remaining unsolved problems, highlights the ongoing research efforts aimed at a deeper understanding of the role of the phase separation process during spindle assembly and orientation. Our review aims to contribute to the collective knowledge in this area and stimulate further investigations that will enhance our comprehension of the intricate mechanisms governing cell division.

Cite this article

Download citation ▾
Shuang Sun, Yang Yang, Jun Zhou, Peiwei Liu. Liquid–liquid phase separation of microtubule-binding proteins in the regulation of spindle assembly. Cell Proliferation, 2024, 57(10): e13649 DOI:10.1002/cpr.13649

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

QiF, ZhouJ. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol. 2021;13:611-621.

[2]

WuJ, Akhmanova A. Microtubule-organizing centers. Annu Rev Cell Dev Biol. 2017;33:51-75.

[3]

MogilnerA, Wollman R, Civelekoglu-ScholeyG, ScholeyJ. Modeling mitosis. Trends Cell Biol. 2006;16:88-96.

[4]

TanenbaumME, MedemaRH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell. 2010;19:797-806.

[5]

HoffmannI. Centrosomes in mitotic spindle assembly and orientation. Curr Opin Struct Biol. 2021;66:193-198.

[6]

LechlerT, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol. 2021;22:691-708.

[7]

GoodsonHV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10:a022608.

[8]

AkhmanovaA, Steinmetz MO. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol. 2015;16:711-726.

[9]

BrouhardGJ, RiceLM. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19:451-463.

[10]

SunS, XuZ, HuH, et al. The Bacillus cereus toxin alveolysin disrupts the intestinal epithelial barrier by inducing microtubule disorganization through CFAP100. Sci Signal. 2023;16:eade8111.

[11]

ZhongT, WuX, XieW, et al. ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell Death Differ. 2022;29:1719-1729.

[12]

HymanAA, WeberCA, JülicherF. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39-58.

[13]

YangP, Mathieu C, KolaitisRM, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181:325-345.e28.

[14]

SunS, ZhouJ. Phase separation as a therapeutic target in tight junction-associated human diseases. Acta Pharmacol Sin. 2020;41:1310-1313.

[15]

BananiSF, RiceAM, PeeplesWB, et al. Compositional control of phase-separated cellular bodies. Cell. 2016;166:651-663.

[16]

ZhangH, JiX, LiP, et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci. 2020;63:953-985.

[17]

MehtaS, ZhangJ. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022;22:239-252.

[18]

WoodruffJB, Ferreira Gomes B, WidlundPO, MahamidJ, Honigmann A, HymanAA. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell. 2017;169:1066-1077.e10.

[19]

SunM, JiaM, RenH, et al. NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation. Nat Commun. 2021;12:7157.

[20]

MaH, QiF, JiL, et al. NuMA forms condensates through phase separation to drive spindle pole assembly. J Mol Cell Biol. 2022;14:mjab081.

[21]

TrivediP, Stukenberg PT. A condensed view of the chromosome passenger complex. Trends Cell Biol. 2020;30:676-687.

[22]

OngJY, TorresJZ. Phase separation in cell division. Mol Cell. 2020;80:9-20.

[23]

BoykoS, Surewicz WK. Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol. 2022;32:611-623.

[24]

SongX, YangF, YangT, et al. Phase separation of EB1 guides microtubule plus-end dynamics. Nat Cell Biol. 2023;25:79-91.

[25]

MieschJ, Wimbish RT, VelluzMC, AumeierC. Phase separation of +TIP networks regulates microtubule dynamics. Proc Natl Acad Sci U S A. 2023;120:e2301457120.

[26]

KingMR, PetryS. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat Commun. 2020;11:270.

[27]

WoodruffJB. Phase separation of BuGZ promotes Aurora A activation and spindle assembly. J Cell Biol. 2018;217:9-10.

[28]

ZhangM, YangF, WangW, et al. SKAP interacts with Aurora B to guide end-on capture of spindle microtubules via phase separation. J Mol Cell Biol. 2022;13(12):841-852.

[29]

VaughanKT. TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol. 2005;171:197-200.

[30]

NehligA, MolinaA, Rodrigues-FerreiraS, HonoréS, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci. 2017;74:2381-2393.

[31]

BielingP, LaanL, SchekH, et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature. 2007;450:1100-1105.

[32]

HayashiI, IkuraM. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J Biol Chem. 2003;278:36430-36434.

[33]

SlepKC, RogersSL, ElliottSL, Ohkura H, KolodziejPA, ValeRD. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J Cell Biol. 2005;168:587-598.

[34]

HonnappaS, Gouveia SM, WeisbrichA, et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell. 2009;138:366-376.

[35]

HonnappaS, JohnCM, KostrewaD, Winkler FK, SteinmetzMO. Structural insights into the EB1-APC interaction. EMBO J. 2005;24:261-269.

[36]

JiangK, WangJ, LiuJ, et al. TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep. 2009;10:857-865.

[37]

Mimori-KiyosueY, Grigoriev I, LansbergenG, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol. 2005;168:141-153.

[38]

WardT, WangM, LiuX, et al. Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis. J Biol Chem. 2013;288:15771-15785.

[39]

WeisbrichA, Honnappa S, JaussiR, et al. Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol. 2007;14:959-967.

[40]

AskhamJM, Vaughan KT, GoodsonHV, MorrisonEE. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell. 2002;13:3627-3645.

[41]

LouieRK, Bahmanyar S, SiemersKA, et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci. 2004;117:1117-1128.

[42]

KomarovaYA, Akhmanova AS, KojimaS, GaljartN, BorisyGG. Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol. 2002;159:589-599.

[43]

KomarovaY, Lansbergen G, GaljartN, GrosveldF, BorisyGG, AkhmanovaA. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol Biol Cell. 2005;16:5334-5345.

[44]

LawrenceEJ, ArpagG, NorrisSR, Zanic M. Human CLASP2 specifically regulates microtubule catastrophe and rescue. Mol Biol Cell. 2018;29:1168-1177.

[45]

XiaP, ZhouJ, SongX, et al. Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction. J Mol Cell Biol. 2014;6:240-254.

[46]

HarmonTS, Holehouse AS, RosenMK, PappuRV. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife. 2017;6:e30294.

[47]

LiP, Banjade S, ChengHC, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336-340.

[48]

BanjadeS, WuQ, MittalA, Peeples WB, PappuRV, RosenMK. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proc Natl Acad Sci U S A. 2015;112:E6426-E6435.

[49]

des GeorgesA, Katsuki M, DrummondDR, et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol. 2008;15:1102-1108.

[50]

von LoeffelholzO, Venables NA, DrummondDR, KatsukiM, CrossR, MooresCA. Nucleotide-and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. Nat Commun. 2017;8:2110.

[51]

MaanR, ReeseL, VolkovVA, et al. Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends. Nat Cell Biol. 2023;25:68-78.

[52]

MeierSM, FarcasAM, KumarA, et al. Multivalency ensures persistence of a +TIP body at specialized microtubule ends. Nat Cell Biol. 2023;25:56-67.

[53]

ZimniakT, StenglK, MechtlerK, Westermann S. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. J Cell Biol. 2009;186:379-391.

[54]

KumarA, MeierSM, FarcasAM, Manatschal C, BarralY, SteinmetzMO. Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure. 2021;29:1266-1278.e64.

[55]

PaolettiA, Bornens M. Kar9 asymmetrical loading on spindle poles mediates proper spindle alignment in budding yeast. Dev Cell. 2003;4:289-290.

[56]

KammererD, Stevermann L, LiakopoulosD. Ubiquitylation regulates interactions of astral microtubules with the cleavage apparatus. Curr Biol. 2010;20:1233-1243.

[57]

YangC, WuJ, de HeusC, et al. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol. 2017;216:3179-3198.

[58]

NakagawaH, KoyamaK, MurataY, Morito M, AkiyamaT, NakamuraY. EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene. 2000;19:210-216.

[59]

LeterrierC, VacherH, FacheMP, et al. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc Natl Acad Sci U S A. 2011;108:8826-8831.

[60]

StraubeA, MerdesA. EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr Biol. 2007;17:1318-1325.

[61]

Rosas-SalvansM, Sutanto R, SureshP, DumontS. The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface. Curr Biol. 2022;32(12):2621-2631.e3.

[62]

DunschAK, Linnane E, BarrFA, GrunebergU. The astrin-kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. J Cell Biol. 2011;192(6):959-968.

[63]

JiangK, Faltova L, HuaS, et al. Structural basis of formation of the microtubule minus-end-regulating CAMSAP-Katanin complex. Structure. 2018;26(3):375-382.e4.

[64]

KernDA-O, MondaJK, SuKC, Wilson-Kubalek EM, CheesemanIA-O. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Elife. 2017;6:e26866.

[65]

WangX, ZhuangX, CaoD, et al. Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J Biol Chem. 2012;284(47):39380-39390.

[66]

SongX, ContiD, ShresthaRL, Braun D, DraviamVM. Counteraction between Astrin-PP1 and Cyclin-B-CDK1 pathways protects chromosome-microtubule attachments independent of biorientation. Nat Commun. 2021;12:7010.

[67]

JiangH, HeX, WangS, et al. A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell. 2014;28:268-281.

[68]

JiangH, WangS, HuangY, et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell. 2015;163:108-122.

[69]

HuangY, LiT, Ems McClungSC, et al. Aurora A activation in mitosis promoted by BuGZ. J Cell Biol. 2018;217:107-116.

[70]

GrussOJ, Wittmann M, YokoyamaH, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol. 2002;4(11):871-879.

[71]

WittmannT, WilmM, KarsentiE, Vernos I. TPX2, a novel xenopus MAP involved in spindle pole organization. J Cell Biol. 2000;149(7):1405-1418.

[72]

SchatzCA, Santarella R, HoengerA, et al. Importin alpha-regulated nucleation of microtubules by TPX2. EMBO J. 2003;22(9):2060-2070.

[73]

GuoC, Alfaro-Aco R, ZhangC, RussellRW, PetryS, PolenovaT. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. Nat Commun. 2023;14:3682.

[74]

SetruSU, Gouveia B, Alfaro-AcoR, ShaevitzJW, StoneHA, PetryS. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. Nat Phys. 2021;17:493-498.

[75]

GrussOJ, Carazo-Salas RE, SchatzCA, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 2001;104(1):10-93.

[76]

SafariMS, KingMR, BrangwynneCP, PetryS. Interaction of spindle assembly factor TPX2 with importins-α/β inhibits protein phase separation. J Biol Chem. 2021;297:100998.

[77]

PetryS, GroenAC, IshiharaK, Mitchison TJ, ValeRD. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell. 2013;152(4):768-777.

[78]

MaN, TitusJ, GableA, Ross JL, WadsworthP. TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. J Cell Biol. 2011;195(1):11-98.

[79]

BaylissR, SardonT, VernosI, Conti E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell. 2003;12(4):851-862.

[80]

EyersPA, Erikson E, ChenLG, MallerJL. A novel mechanism for activation of the protein kinase Aurora a. Curr Biol. 2003;13:691-697.

[81]

TsaiMY, WieseC, CaoK, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol. 2003;5:242-248.

[82]

BirdAW, HymanAA. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J Cell Biol. 2008;182(2):289-300.

[83]

RadulescuAE, Cleveland DW. NuMA after 30 years: the matrix revisited. Trends Cell Biol. 2010;20:214-222.

[84]

RanJ, LiH, ZhangY, et al. A non-mitotic role for Eg5 in regulating cilium formation and sonic hedgehog signaling. Sci Bull. 2021;66:1620-1623.

[85]

TakayanagiH, HayaseJ, KamakuraS, et al. Intramolecular interaction in LGN, an adaptor protein that regulates mitotic spindle orientation. J Biol Chem. 2019;294:19655-19666.

[86]

OkumuraM, Natsume T, KanemakiMT, KiyomitsuT. Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. Elife. 2018;7:e36559.

[87]

SeldinL, Muroyama A, LechlerT. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. Elife. 2016;5:e12504.

[88]

HueschenCL, KennySJ, XuK, DumontS. NuMA recruits dynein activity to microtubule minus-ends at mitosis. Elife. 2017;6:e29328.

[89]

SongX, YangF, LiuX, et al. Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol. 2021;17:1314-1323.

[90]

Domingo-SananesMR, Kapuy O, HuntT, NovakB. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos Trans R Soc Lond B Biol Sci. 2011;366:3584-3594.

[91]

GalliniS, Carminati M, De MattiaF, et al. NuMA phosphorylation by Aurora-A orchestrates spindle orientation. Curr Biol. 2016;26:458-469.

[92]

PolverinoF, NasoFD, AsteritiIA, et al. The Aurora-A/TPX2 axis directs spindle orientation in adherent human cells by regulating NuMA and microtubule stability. Curr Biol. 2021;31:658-667.e55.

[93]

BanerjeeB, Kestner C, StukenbergPT. EB1 enables spindle microtubules to regulate centromeric recruitment of Aurora B. J Cell Biol. 2014;204(6):947-963.

[94]

SunL, GaoJ, DongX, et al. EB1 promotes Aurora-B kinase activity through blocking its inactivation by protein phosphatase 2A. Proc Natl Acad Sci U S A. 2008;105(20):7153-7158.

[95]

IimoriM, Watanabe S, KiyonariS, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117.

[96]

FerreiraJG, Pereira AJ, AkhmanovaA, MaiatoH. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J Cell Biol. 2013;201(5):709-724.

[97]

SchmidtJC, Arthanari H, BoeszoermenyiA, et al. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev Cell. 2012;23(5):1081.

[98]

RedliPM, GasicI, MeraldiP, Nigg EA, SantamariaA. The Ska complex promotes Aurora B activity to ensure chromosome biorientation. J Cell Biol. 2016;215:77-93.

[99]

RadhakrishnanRM, Kizhakkeduth ST, NairVM, et al. Kinetochore-microtubule attachment in human cells is regulated by the interaction of a conserved motif of Ska1 with EB1. J Biol Chem. 2023;299:102853.

[100]

ThomasGE, Bandopadhyay K, SutradharS, et al. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice. Nat Commun. 2016;7:11665.

[101]

XieS, LiJ, SunS, et al. TUBright: a peptide probe for imaging microtubules. Anal Chem. 2022;94:11168-11174.

[102]

YuF, YangS, NiH, et al. O-GlcNAcylation regulates centrosome behavior and cell polarity to reduce pulmonary fibrosis and maintain the epithelial phenotype. Adv Sci. 2023;10:e2303545.

[103]

SharmaK, Stockert F, ShenoyJ, et al. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat Commun. 2024;15:486.

[104]

SoC, SeresKB, SteyerAM, et al. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science. 2019;364:eaat9557.

[105]

WangX, Baumann C, De La FuenteR, ViveirosMM. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes. J Cell Sci. 2021;134:jcs256297.

RIGHTS & PERMISSIONS

2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/