Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes

Tian Zhao , Xiaolan Yang , Guangfei Duan , Jialin Chen , Kefeng He , Yong-Xiang Chen , Shi-Zhong Luo

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13645

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (10) : e13645 DOI: 10.1002/cpr.13645
ORIGINAL ARTICLE

Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes

Author information +
History +
PDF

Abstract

The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid–liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.

Cite this article

Download citation ▾
Tian Zhao, Xiaolan Yang, Guangfei Duan, Jialin Chen, Kefeng He, Yong-Xiang Chen, Shi-Zhong Luo. Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes. Cell Proliferation, 2024, 57(10): e13645 DOI:10.1002/cpr.13645

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ThompsonAG, GrayE, Heman-AckahSM, et al. Extracellular vesicles in neurodegenerative disease—pathogenesis to biomarkers. Nat Rev Neurol. 2016;12:346-357.

[2]

ColomboM, RaposoG, ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-289.

[3]

YangY, IkezuT. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol Dis. 2019;130:104512.

[4]

IbrahimA, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol. 2015;78:67.

[5]

SkdabC, DsabC, LeabC, Pbfab C. MDA-9/Syntenin: an emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res. 2019;144:137-191.

[6]

MathieuM, Martin-Jaular L, LavieuG, ThéryC. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9-17.

[7]

ImjetiNS, MenckK, Egea-JimenezAL, et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc Natl Acad Sci U S A. 2017;114:12495-12500.

[8]

LeblancR, Kashyap R, BarralK, et al. Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. J Extracell Vesicles. 2020;10:e12039.

[9]

FriandV, DavidG, ZimmermannP. Syntenin and syndecan in the biogenesis of exosomes. Biol Cell. 2015;107:331-341.

[10]

CareyDJ. Syndecans: multifunctional cell-surface co-receptors. Biochem J. 1997;327(Pt 1):1-16.

[11]

GrootjansJJ, Zimmermann P, ReekmansG, et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A. 1997;94:13683-13688.

[12]

GrootjansJJ, Reekmans G, CeulemansH, DavidG. Syntenin-syndecan binding requires syndecan-synteny and the co-operation of both PDZ domains of syntenin. J Biol Chem. 2000;275:19933-19941.

[13]

MolliexA, Temirov J, LeeJ, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163:123-133.

[14]

BananiSF, LeeHO, HymanAA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285-298.

[15]

ShinY, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357):eaaf4382.

[16]

Brangwynne CliffordP, Tompa P, PappuRV. Polymer physics of intracellular phase transitions. Nat Phys. 2015;11:899-904.

[17]

LiuXM, MaL, SchekmanR. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. Elife. 2021;10:e71982.

[18]

BienzM. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem Sci. 2014;39:487-495.

[19]

ShashaC, Dugast-Darzacq C, LiuZ, et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361:eaar2555.

[20]

SuX, DitlevJA, HuiE, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352:595-599.

[21]

BanjadeS, RosenMK. Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife. 2014;3:e04123.

[22]

CaseLB, DitlevJA, RosenMK. Regulation of transmembrane signaling by phase separation. Annu Rev Biophys. 2019;48:465-494.

[23]

OhES, WoodsA, CouchmanJR. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J Biol Chem. 1997;272:11805-11811.

[24]

ChoiY, KimS, LeeJ, et al. The oligomeric status of syndecan-4 regulates syndecan-4 interaction with alpha-actinin. Eur J Cell Biol. 2008;87:807-815.

[25]

MonahanZ, RyanVH, JankeAM, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 2017;36:2951-2967.

[26]

HorowitzA, SimonsM. Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha. J Biol Chem. 1998;273:25548-25551.

[27]

KooB-K, JungYS, ShinJ, et al. Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling. J Mol Biol. 2006;355:651-663.

[28]

HorowitzA, SimonsM. Regulation of syndecan-4 phosphorylation in vivo. J Biol Chem. 1998;273:10914-10918.

[29]

BassMD, Humphries MJ. Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem J. 2002;368:1-15.

[30]

BaiettiMF, ZhangZ, MortierE, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677-685.

[31]

OhES, WoodsA, CouchmanJR. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J Biol Chem. 1997;272:8133-8136.

[32]

RomeroP, Obradovic Z, LiX, GarnerEC, BrownCJ, DunkerAK. Sequence complexity of disordered protein. Proteins. 2001;42:38-48.

[33]

LiW, HuJ, ShiB, et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol. 2020;22:960-972.

[34]

ZengM, Díaz-Alonso J, YeF, et al. Phase separation-mediated TARP/MAGUK complex condensation and AMPA receptor synaptic transmission. Neuron. 2019;104:529-543.e526.

[35]

ZhuG, XieJ, KongW, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK Hyperactivation. Cell. 2020;183:490-502.e418.

[36]

KroschwaldS, Maharana S, SimonA. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters. 2017.

[37]

SuX, DitlevJA, RosenMK, Vale RD. Reconstitution of TCR signaling using supported lipid bilayers. Methods Mol Biol. 2017;1584:65-76.

[38]

HorowitzA, Murakami M, GaoY, SimonsM. Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry. 1999;38:15871-15877.

[39]

BaciuPC, Goetinck PF. Protein kinase C regulates the recruitment of syndecan-4 into focal contacts. Mol Biol Cell. 1995;6:1503-1513.

[40]

BobrieA, Colombo M, RaposoG, ThéryC. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12:1659-1668.

[41]

BroekmanML, MaasSLN, AbelsER, Mempel TR, KrichevskyAM, BreakefieldXO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14:482-495.

[42]

ThéryC, Zitvogel L, AmigorenaS. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569-579.

RIGHTS & PERMISSIONS

2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/