The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer

Luca Grisetti , Clarissa J. C. Garcia , Anna A. Saponaro , Claudio Tiribelli , Devis Pascut

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (8) : e13641

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (8) : e13641 DOI: 10.1002/cpr.13641
REVIEW

The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer

Author information +
History +
PDF

Abstract

Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA’s dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA’s role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA’s critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.

Cite this article

Download citation ▾
Luca Grisetti, Clarissa J. C. Garcia, Anna A. Saponaro, Claudio Tiribelli, Devis Pascut. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Proliferation, 2024, 57(8): e13641 DOI:10.1002/cpr.13641

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RumgayH, ArnoldM, FerlayJ, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598-1606.

[2]

LlovetJM, KelleyRK, VillanuevaA, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

[3]

YangJD, Hainaut P, GoresGJ, AmadouA, Plymoth A, RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604.

[4]

XueJ, NiH, WangF, Xu K, NiuM. Advances in locoregional therapy for hepatocellular carcinoma combined with immunotherapy and targeted therapy. J Interv Med. 2021;4(3):105-113.

[5]

MakaryMS, Ramsell S, MillerE, BealEW, DowellJD. Hepatocellular carcinoma locoregional therapies: outcomes and future horizons. WJG. 2021;27(43):7462-7479.

[6]

AlqahtaniA, KhanZ, AlloghbiAS, Said Ahmed T, AshrafMM, HammoudaD. Hepatocellular carcinoma: molecular mechanisms and targeted therapies. Medicina. 2019;55(9):526.

[7]

EskandarpourM, HuangF, ReevesKA, Clark E, HanssonJ. Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro. Int J Cancer. 2009;124(1):16-26.

[8]

FunkJO. Cell cycle checkpoint genes and cancer. Encyclopaedia of Life Sciences. 1st ed. John Wiley & Sons; 2006.

[9]

MalumbresM. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122.

[10]

KnudsenES, Schultz E, HamiltonD, et al. Real-world experience with CDK4/6 inhibitors for metastatic HR+/HER2− breast cancer at a single cancer center. Oncologist. 2022;27(8):646-654.

[11]

DoT-V, XiaoF, BickelLE, et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene. 2014;33(5):539-549.

[12]

HongO-Y, KangSY, NohE-M. et al. Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells. BMB Rep. 2022;55(2):87-91.

[13]

FernandoM, DuijfPHG, ProctorM, et al. Dysregulated G2 phase checkpoint recovery pathway reduces DNA repair efficiency and increases chromosomal instability in a wide range of tumours. Oncogenesis. 2021;10(5):41.

[14]

PugachevaEN, Golemis EA. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. 2005;7(10):937-946.

[15]

NikonovaAS, Astsaturov I, SerebriiskiiIG, DunbrackRL, Golemis EA. Aurora-A kinase (AURKA) in normal and pathological cell growth. Cell Mol Life Sci. 2013;70(4):661-687.

[16]

GloverDM, AlpheyL, AxtonJM, et al. Mitosis in drosophila development. J Cell Sci Suppl. 1989;12:277-291.

[17]

GloverDM, Leibowitz MH, McLeanDA, ParryH. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell. 1995;81(1):95-105.

[18]

CacioppoR, LindonC. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol. 2022;12(9):220134.

[19]

WillemsE, Dedobbeleer M, DigregorioM, LombardA, Lumapat PN, RogisterB. The functional diversity of Aurora kinases: a comprehensive review. Cell Div. 2018;13(1):7.

[20]

GustafsonWC, Meyerowitz JG, NekritzEA, et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell. 2014;26(3):414-427.

[21]

JanečekM, Rossmann M, SharmaP, et al. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep. 2016;6(1):28528.

[22]

LittlepageLE, WuH, AndressonT, Deanehan JK, AmundadottirLT, RudermanJV. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc Natl Acad Sci U S A. 2002;99(24):15440-15445.

[23]

WalterAO, Seghezzi W, KorverW, SheungJ, LeesE. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene. 2000;19(42):4906-4916.

[24]

LittlepageLE, Ruderman JV. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev. 2002;16(17):2274-2285.

[25]

TaguchiS, HondaK, SugiuraK, Yamaguchi A, FurukawaK, UranoT. Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett. 2002;519(1–3):59-65.

[26]

HondaK, MiharaH, KatoY, et al. Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene. 2000;19(24):2812-2819.

[27]

FloydS, PinesJ, LindonC. APC/CCdh1 targets Aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr Biol. 2008;18(21):1649-1658.

[28]

CastroA, Arlot-Bonnemains Y, VigneronS, LabbéJ-C, Prigent C, LorcaT. APC/fizzy-related targets Aurora-A kinase for proteolysis. EMBO Rep. 2002;3(5):457-462.

[29]

BaldiniE, D’Armiento M, UlisseS. A new Aurora in anaplastic thyroid cancer therapy. Int J Endocrinol. 2014;2014:e816430.

[30]

TanakaM, UedaA, KanamoriH, et al. Cell-cycle-dependent regulation of human aurora a transcription is mediated by periodic repression of E4TF1. J Biol Chem. 2002;277(12):10719-10726.

[31]

MarumotoT, HirotaT, MorisakiT, et al. Roles of Aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells. 2002;7(11):1173-1182.

[32]

MüllerGA, Wintsche A, StangnerK, ProhaskaSJ, Stadler PF, EngelandK. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res. 2014;42(16):10331-10350.

[33]

UchiumiT, LongoDL, FerrisDK. Cell cycle regulation of the human polo-like kinase (PLK) promoter. J Biol Chem. 1997;272(14):9166-9174.

[34]

ZwickerJ, GrossC, LucibelloFC, et al. Cell cycle regulation of cdc25C transcription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Res. 1995;23(19):3822-3830.

[35]

ZwickerJ, Lucibello FC, WolfraimLA, et al. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 1995;14(18):4514-4522.

[36]

LeeS, CimicaV, RamachandraN, ZagzagD, Kalpana GV. Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival. Cancer Res. 2011;71(9):3225-3235.

[37]

YuZ, SunY, SheX, et al. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J Hematol Oncol. 2017;10:115.

[38]

NowakI, Boratyn E, StudentS, et al. MCPIP1 ribonuclease can bind and cleave AURKA mRNA in MYCN-amplified neuroblastoma cells. RNA Biol. 2021;18(1):144-156.

[39]

HirotaT, Kunitoku N, SasayamaT, et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 2003;114(5):585-598.

[40]

LiuQ, Ruderman JV. Aurora A, mitotic entry, and spindle bipolarity. Proc Natl Acad Sci. 2006;103(15):5811-5816.

[41]

KuferTA, Silljé HHW, KörnerR, GrussOJ, Meraldi P, NiggEA. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol. 2002;158(4):617-623.

[42]

HuttererA, Berdnik D, Wirtz-PeitzF, ŽigmanM, Schleiffer A, KnoblichJA. Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell. 2006;11(2):147-157.

[43]

PlataniM, Trinkle-Mulcahy L, PorterM, JeyaprakashAA, Earnshaw WC. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes. J Cell Biol. 2015;210(1):957-974.

[44]

ReboutierD, Troadec M-B. Cremet J-Y, Fukasawa K, Prigent C. Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89. J Cell Biol. 2012;197(1):19-26.

[45]

MouPK, YangEJ, ShiC, RenG, TaoS, ShimJS. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp Mol Med. 2021;53(5):835-847.

[46]

ZhengF, YueC, LiG, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7(1):10180.

[47]

PetrettiC, Savoian M, MontembaultE, GloverDM, Prigent C, GietR. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep. 2006;7(4):418-424.

[48]

WangG, JiangQ, ZhangC. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci. 2014;127(19):4111-4122.

[49]

BrodieKM, Henderson BR. Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome. J Biol Chem. 2012;287(10):7701-7716.

[50]

TeradaY, UetakeY, KuriyamaR. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in drosophila and mammalian cells. J Cell Biol. 2003;162(5):757-764.

[51]

HsuL-C, WhiteRL. BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A. 1998;95(22):12983-12988.

[52]

EyersPA, Erikson E, ChenLG, MallerJL. A novel mechanism for activation of the protein kinase Aurora A. Curr Biol. 2003;13(8):691-697.

[53]

CarmenaM, Ruchaud S, EarnshawWC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol. 2009;21(6):796-805.

[54]

BaylissR, SardonT, VernosI, Conti E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell. 2003;12(4):851-862.

[55]

ZengK, BastosRN, BarrFA, Gruneberg U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol. 2010;191(7):1315-1332.

[56]

JoukovV, De Nicolo A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci Signal. 2018;11(543):eaar4195.

[57]

YanM, WangC, HeB, et al. Aurora-A kinase: a potent oncogene and target for cancer therapy. Med Res Rev. 2016;36(6):1036-1079.

[58]

GarrettS, AuerK, ComptonDA, Kapoor TM. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol. 2002;12(23):2055-2059.

[59]

GrussOJ, Wittmann M, YokoyamaH, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol. 2002;4(11):871-879.

[60]

AsteritiIA, Giubettini M, LaviaP, GuarguagliniG. Aurora-A inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces. Mol Cancer. 2011;10:131.

[61]

KaestnerP, StolzA, BastiansH. Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther. 2009;8(7):2046-2056.

[62]

CastroA, Vigneron S, BernisC, LabbéJ-C, Prigent C, LorcaT. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 2002;3(12):1209-1214.

[63]

LindonC, GrantR, MinM. Ubiquitin-mediated degradation of Aurora kinases. Front Oncol. 2015;5:307.

[64]

MatsumotoML, Wickliffe KE, DongKC, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell. 2010;39(3):477-484.

[65]

DuR, HuangC, LiuK, LiX, DongZ. Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy. Mol Cancer. 2021;20(1):15.

[66]

LiuR, JiangZ, KongW, Zheng S, DaiT, WangG. A novel nine-gene signature associated with immune infiltration for predicting prognosis in hepatocellular carcinoma. Front Genet. 2021;12:12.

[67]

YangT, ChenY, XuJ, LiJ, LiuH, LiuN. Bioinformatics screening the novel and promising targets of curcumin in hepatocellular carcinoma chemotherapy and prognosis. BMC Complement Med Ther. 2022;22:21.

[68]

XieW, WangB, WangX, Hou D, SuH, HuangH. Nine hub genes related to the prognosis of HBV-positive hepatocellular carcinoma identified by protein interaction analysis. Ann Transl Med. 2020;8(7):478.

[69]

LiC, DingJ, MeiJ. Comprehensive analysis of epigenetic associated genes on differential gene expression and prognosis in hepatocellular carcinoma. J Environ Pathol Toxicol Oncol. 2022;41(1):27-43.

[70]

GuoJ, LiW, ChengL, Gao X. Identification and validation of hub genes with poor prognosis in hepatocellular carcinoma by integrated bioinformatical analysis. Int J Gen Med. 2022;15:3933-3941.

[71]

XuL, TongT, WangZ, Qiang Y, MaF, MaX. Identification of hub genes and analysis of prognostic values in hepatocellular carcinoma by bioinformatics analysis. Am J Med Sci. 2020;359(4):226-234.

[72]

GuoL, WangZ, DuY, et al. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int. 2020;20:251.

[73]

MengZ, WuJ, LiuX, et al. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res. 2020;48(7):0300060520910019.

[74]

SuW-L, ChuangS-C, WangY-C, et al. Expression of FOXM1 and Aurora-A predicts prognosis and sorafenib efficacy in patients with hepatocellular carcinoma. CBM. 2020;28(3):341-350.

[75]

ZhangY, TangY, GuoC, LiG. Integrative analysis identifies key mRNA biomarkers for diagnosis, prognosis, and therapeutic targets of HCV-associated hepatocellular carcinoma. Aging. 2021;13(9):12865-12895.

[76]

YangZ, WuX, LiJ, ZhengQ, NiuJ, LiS. CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM may be potential therapeutic targets for hepatocellular carcinoma using integrated bioinformatic analysis. IJGM. 2021;14:10185-10194.

[77]

JiY, YinY, ZhangW. Integrated bioinformatic analysis identifies networks and promising biomarkers for hepatitis B virus-related hepatocellular carcinoma. Int J Genomics. 2020;2020:2061024.

[78]

ZhangL, Makamure J, ZhaoD, et al. Bioinformatics analysis reveals meaningful markers and outcome predictors in HBV-associated hepatocellular carcinoma. Exp Ther Med. 2020;20(1):427-435.

[79]

JengY-M, PengS-Y, LinC-Y, Hsu H-C. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res. 2004;10(6):2065-2071.

[80]

ChenC, SongG, XiangJ, Zhang H, ZhaoS, ZhanY. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma. Biochem Biophys Res Commun. 2017;486(2):514-520.

[81]

ShenZ, YinL, ZhouH, et al. Combined inhibition of AURKA and HSF1 suppresses proliferation and promotes apoptosis in hepatocellular carcinoma by activating endoplasmic reticulum stress. Cell Oncol. 2021;44(5):1035-1049.

[82]

HaoJ, PengQ, WangK, et al. Antitumor effect of lenvatinib combined with alisertib in hepatocellular carcinoma by targeting the DNA damage pathway. Biomed Res Int. 2021;2021:6613439.

[83]

LiuF, WangG, WangX, et al. Targeting high Aurora kinases expression as an innovative therapy for hepatocellular carcinoma. Oncotarget. 2017;8(17):27953-27965.

[84]

LiG, TianY, GaoZ. The role of AURKA/miR-199b-3p in hepatocellular carcinoma cells. Clin Lab Anal. 2022;36(12):e24758.

[85]

GrisettiL, Saponaro AA, SukowatiCHC, et al. The expression of Aurora kinase A and its potential role as a regulator of programmed death-ligand 1 in hepatocellular carcinoma: implications for immunotherapy and immune checkpoint regulation in hepatocarcinogenesis. Dig Liver Dis. 2023;55:S219-S220.

[86]

LiuZ, WuB, LiuX, et al. CD73/NT5E-mediated ubiquitination of AURKA regulates alcohol-related liver fibrosis via modulating hepatic stellate cell senescence. Int J Biol Sci. 2023;19(3):950-966.

[87]

SuZ-L, SuC-W, HuangY-L, et al. A novel AURKA mutant-induced early-onset severe hepatocarcinogenesis greater than wild-type via activating different pathways in zebrafish. Cancers. 2019;11(7):927.

[88]

JeongGU, AhnB-Y. Aurora kinase A promotes hepatitis B virus replication and expression. Antiviral Res. 2019;170:104572.

[89]

BaoZ, LuL, LiuX, et al. Association between the functional polymorphism Ile31Phe in the AURKA gene and susceptibility of hepatocellular carcinoma in chronic hepatitis B virus carriers. Oncotarget. 2017;8(33):54904-54912.

[90]

AsteritiIA, Daidone F, ColottiG, et al. Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget. 2017;8(19):32117-32133.

[91]

PittsTM, Bradshaw-Pierce EL, BagbySM, et al. Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget. 2016;7(31):50290-50301.

[92]

LiX, XuW, KangW, et al. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics. 2018;8(6):1740-1751.

[93]

WangB, HsuC-J, ChouC-H, et al. Variations in the AURKA gene: biomarkers for the development and progression of hepatocellular carcinoma. Int J Med Sci. 2018;15(2):170-175.

[94]

FaridAA-A, AfifyNA-A. Alsharnoby AA-A, Abdelsameea E, Bedair HM. Predictive role of AURKA rs 1047972 gene polymorphism and the risk of development of hepatocellular carcinoma. Immunol Invest. 2022;51(5):1211-1221.

[95]

WangJ, WangC, YangL, Li K. Identification of the critical genes and miRNAs in hepatocellular carcinoma by integrated bioinformatics analysis. Med Oncol. 2022;39(2):21.

[96]

LuL, HanH, TianY, et al. Aurora kinase A mediates c-Myc’s oncogenic effects in hepatocellular carcinoma: a c-Myc-AURKA FEEDBACK LOOP IN HEPATOCARCINOGENESIS. Mol Carcinog. 2015;54(11):1467-1479.

[97]

SequeraC, Grattarola M, HolczbauerA, et al. MYC and MET cooperatively drive hepatocellular carcinoma with distinct molecular traits and vulnerabilities. Cell Death Dis. 2022;13(11):994.

[98]

DauchD, Rudalska R, CossaG, et al. A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med. 2016;22(7):744-753.

[99]

WuM, ZhouY, FeiC, et al. ID1 overexpression promotes HCC progression by amplifying the AURKA/Myc signaling pathway. Int J Oncol. 2020;57(3):845-857.

[100]

TakahashiY, Sheridan P, NiidaA, et al. The AURKA/TPX2 axis drives colon tumorigenesis cooperatively with MYC. Ann Oncol. 2015;26(5):935-942.

[101]

NguyenTTT, ShangE, ShuC, et al. Aurora kinase A inhibition reverses the Warburg effect and elicits unique metabolic vulnerabilities in glioblastoma. Nat Commun. 2021;12(1):5203.

[102]

SunS, ZhouW, LiX, et al. Nuclear Aurora kinase A triggers programmed death-ligand 1-mediated immune suppression by activating MYC transcription in triple-negative breast cancer. Cancer Commun. 2021;41(9):851-866.

[103]

TonA-T, SinghK, MorinH, et al. Dual-inhibitors of N-Myc and AURKA as potential therapy for neuroendocrine prostate cancer. IJMS. 2020;21(21):8277.

[104]

ChanGKL, MaiselS, HwangYC, et al. Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. Elife. 2023;12:e69521.

[105]

ShenH-M, ZhangD, XiaoP, Qu B, SunY-F. E2F1-mediated KDM4A-AS1 up-regulation promotes EMT of hepatocellular carcinoma cells by recruiting ILF3 to stabilize AURKA mRNA. Cancer Gene Ther. 2023;30(7):1007-1017.

[106]

CuiS-Y, HuangJ-Y, ChenY-T, et al. The role of Aurora A in hypoxia-inducible factor 1α-promoting malignant phenotypes of hepatocelluar carcinoma. Cell Cycle. 2013;12(17):2849-2866.

[107]

YangN, WangC, WangZ, et al. FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 2017;36(24):3428-3440.

[108]

ZhaiJ, QuS, LiX, et al. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma. Biochem Biophys Res Commun. 2015;464(1):161-167.

[109]

CuiS, ZhangK, LiC, et al. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget. 2016;7(47):78009-78028.

[110]

ZhangH, BaoJ, ZhaoS, Huo Z, LiB. MicroRNA-490-3p suppresses hepatocellular carcinoma cell proliferation and migration by targeting the aurora kinase A gene (AURKA). Arch Med Sci. 2020;16(2):395-406.

[111]

YuanYL, YuH, MuS-M, Dong YD, LiDY. MiR-26a-5p inhibits cell proliferation and enhances doxorubicin sensitivity in HCC cells via targeting AURKA. Technol Cancer Res Treat. 2019;18:1533033819851833.

[112]

FanL, HuangX, ChenJ, et al. Long noncoding RNA MALAT1 contributes to sorafenib resistance by targeting miR-140-5p/Aurora-A signaling in hepatocellular carcinoma. Mol Cancer Ther. 2020;19(5):1197-1209.

[113]

HanahanD, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.

[114]

DonnellaHJ, WebberJT, LevinRS, et al. Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nat Chem Biol. 2018;14(8):768-777.

[115]

YinY, KongD, HeK, XiaQ. Aurora kinase A regulates liver regeneration through macrophages polarization and Wnt/β-catenin signalling. Liver Int. 2021;42(2):468-478.

[116]

MobleyA, ZhangS, BondarukJ, et al. Aurora kinase A is a biomarker for bladder cancer detection and contributes to its aggressive behavior. Sci Rep. 2017;7:40714.

[117]

LiZ, HanS, LiuB, et al. Knockdown of Aurora-A inhibits proliferation and promotes apoptosis of HepG2 hepatocellular carcinoma cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2021;37(3):233-239.

[118]

ShenZ-T, ChenY, HuangG-C, Zhu X-X, WangR, ChenL-B. Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-κB signaling pathway. BMC Cancer. 2019;19(1):1075.

[119]

LueddeT, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108-118.

[120]

BriassouliP, ChanF, SavageK, Reis-Filho JS, LinardopoulosS. Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 2007;67(4):1689-1695.

[121]

LiuX, HeY, LiF, et al. Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell. 2015;58(2):284-296.

[122]

ZhangK, ChenJ, ChenD, et al. Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget. 2014;5(24):12916-12935.

[123]

LiuP, HanB, ZhangY, Wang X. Network pharmacology-based strategy to investigate the mechanisms of Lenvatinib in the treatment of hepatocellular carcinoma. Comput Intell Neurosci. 2022;2022:7102500.

[124]

ZschäbitzS, Grüllich C. Lenvantinib: a tyrosine kinase inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα KIT and RET. In: Martens UM, ed. Small Molecules in Oncology. Springer International Publishing; 2018:187-198.

[125]

BurgessSG, OleksyA, CavazzaT, et al. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol. 2016;6(7):160089.

[126]

RawsonTE, Rüth M, BlackwoodE, et al. A pentacyclic Aurora kinase inhibitor (AKI-001) with high in vivo potency and oral bioavailability. J Med Chem. 2008;51(15):4465-4475.

[127]

YuT, TagatJR, KerekesAD, et al. Discovery of a potent, injectable inhibitor of Aurora kinases based on the Imidazo-[1, 2-a]-pyrazine core. ACS Med Chem Lett. 2010;1(5):214-218.

[128]

HsuYC, CoumarMS, WangW-C. et al. Discovery of BPR1K871, a quinazoline based, multi-kinase inhibitor for the treatment of AML and solid tumors: rational design, synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7(52):86239-86256.

[129]

ManfrediMG, EcsedyJA, ChakravartyA, et al. Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of Aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res. 2011;17(24):7614-7624.

[130]

ZhuQ, YuX, ZhouZ-W, Zhou C, ChenX-W, ZhouS-F. Inhibition of Aurora A kinase by alisertib induces autophagy and cell cycle arrest and increases chemosensitivity in human hepatocellular carcinoma HepG2 cells. CCDT. 2017;17(4):386-401.

[131]

RenB-J, ZhouZ-W, ZhuD-J, et al. Alisertib induces cell cycle arrest, apoptosis, autophagy and suppresses EMT in HT29 and Caco-2 cells. IJMS. 2015;17(1):41.

[132]

MosséYP, FoxE, TeacheyDT, et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children’s oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res. 2019;25(11):3229-3238.

[133]

O’ConnorOA, Özcan M, JacobsenED, et al. Randomized phase III study of alisertib or Investigator’s choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. JCO. 2019;37(8):613-623.

[134]

HahnNM, Sarantopoulos J, HiganoC, et al. MLN8237 (ALISERTIB), an investigational Aurora A kinase (AAK) inhibitor, in patients with advanced solid tumors including castration-resistant prostate cancer (CRPC) receiving a standard docetaxel regimen: preliminary phase 1 results. Ann Oncol. 2012;23: ix303-ix304.

[135]

SehdevV, KatshaA, EcsedyJ, Zaika A, BelkhiriA, El-RifaiW. The combination of alisertib, an investigational Aurora kinase A inhibitor, and docetaxel promotes cell death and reduces tumor growth in preclinical cell models of upper gastrointestinal adenocarcinomas: Alisertib & Docetaxel Inhibit Tumor Growth. Cancer. 2013;119(4):904-914.

[136]

FalchookG, Coleman RL, RoszakA, et al. Alisertib in combination with weekly paclitaxel in patients with advanced breast cancer or recurrent ovarian cancer: a randomized clinical trial. JAMA Oncol. 2019;5(1):e183773.

[137]

SuyamaK, IwaseH. Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control. 2018;25(1):1073274818789361.

[138]

LuoJ, GaoB, LinZ, et al. Efficacy and safety of lenvatinib versus sorafenib in first-line treatment of advanced hepatocellular carcinoma: a meta-analysis. Front Oncol. 2022;12:1010726.

[139]

DuJ, YanL, TorresR, et al. Aurora A–selective inhibitor LY3295668 leads to dominant mitotic arrest, apoptosis in cancer cells, and shows potent preclinical antitumor efficacy. Mol Cancer Ther. 2019;18(12):2207-2219.

[140]

GrisettiL, Saponaro AA, SukowatiC, et al. The role of Aurora kinase A in hepatocellular carcinoma: possible regulation of programmed death-ligand 1. EASL Liver Cancer Summit 2023;2023.

[141]

YangJD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ. 2020;371:m3544.

[142]

ReigM, FornerA, RimolaJ, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681-693.

[143]

A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the cancer of the liver Italian program (CLIP) investigators. Hepatology. 1998;28(3):751-755.

[144]

ChevretS, Trinchet JC, MathieuD, RachedAA, Beaugrand M, ChastangC. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Groupe d’Etude et de Traitement du Carcinome Hépatocellulaire. J Hepatol. 1999;31(1):133-141.

[145]

FoxR, Berhane S, TengM, et al. Biomarker-based prognosis in hepatocellular carcinoma: validation and extension of the BALAD model. Br J Cancer. 2014;110(8):2090-2098.

[146]

IslamB, YuH-Y, DuanT-Q, Pan J, LiM, ZhangR-Q. et al. Cell cycle kinases (AUKA, CDK1, PLK1) are prognostic biomarkers and correlated with tumor-infiltrating leukocytes in HBV related HCC. J Biomol Struct Dyn 2023 0(0):1–17.

[147]

ChenH, WuJ, LuL, et al. Identification of hub genes associated with immune infiltration and predict prognosis in hepatocellular carcinoma via bioinformatics approaches. Front Genet. 2020;11:575762.

[148]

MaX, ZhouL, ZhengS. Transcriptome analysis revealed key prognostic genes and microRNAs in hepatocellular carcinoma. PeerJ. 2020;8:e8930.

[149]

SuL, ZhangG, KongX. A novel five-gene signature for prognosis prediction in hepatocellular carcinoma. Front Oncol. 2021;11:642563.

[150]

KotowiczB, WinterP, FuksiewiczM, et al. Clinical value of kinase Aurora-A serum level determination in patients with breast cancer qualified for neoadjuvant chemotherapy: pilot study. JCO. 2020;38(15_suppl):e12627.

[151]

WinterP, Fuksiewicz M, Jagiello-GruszfeldA, NoweckiZ, Kotowicz B. Expression of soluble form of Aurora A as a predictive factor for neoadjuvant therapy in breast cancer patients: a single-center pilot study. Cancers. 2023;15(22):5446.

[152]

WuJ, LuoH, WangK, Yi B. Development and validation of a novel diagnostic nomogram model using serum oxidative stress markers and AURKA for prediction of nasopharyngeal carcinoma. Cancer Manag Res. 2023;15:1053-1062.

RIGHTS & PERMISSIONS

2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/