With the development of ship electrification, the demand for energy in ports is increasing. The location and natural resources of ports also create conditions for the development of ship electrification. This paper firstly analyzes the current development status of floating solar power generation technology and offshore wind power generation technology, summarizes the obstacles facing the development of offshore power generation platforms, introduces the materials and structures that can be used for floating power generation platforms, and then introduces the port microgrid topology from three aspects of AC microgrid (AC), DC microgrid (DC) and AC/DC hybrid microgrid (AC/DC) hybrid structure, and compares the three structures. Then the existing control methods are reviewed from the perspective of port capacity planning and the application of distributed control in port energy planning is emphasized. Finally, port energy management strategies are introduced from the perspective of multiple time scales, and relevant cases are listed, and the advantages and disadvantages of management strategies under different time scales are compared. At the end of the paper, several advanced smart ports are given as examples, and the new energy used by each port and its development scale are analyzed, and the future clean and efficient ports are envisioned.
This paper presents a framework for generating high-definition (HD) map, and then achieves accurate and robust localization by virtue of the map. An iterative approximation based method is developed to generate a HD map in Lanelet2 format. A feature association method based on structural consistency and feature similarity is proposed to match the elements of the HD map and the actual detected elements. The feature association results from the HD map are used to correct lateral drift in the light detection and ranging odometry. Finally, some experimental results are presented to verify the reliability and accuracy of autonomous driving localization.
Electro-hydraulic power steering (EHPS) systems are widely used in commercial vehicles due to their adjustable power assist and energy-saving advantages. In this paper, a dynamic model of the EHPS system is developed, and quantitative expressions for three evaluation indexes, steering road feel, steering sensibility and steering energy loss, are derived for the first time. A multi-objective collaborative optimization model of the EHPS system is then established, which consists of one total system and three parallel subsystems, based on collaborative optimization theory. Considering the coupled variables of each subsystem, the total system is optimized by a multi-objective algorithm, while the subsystems are optimized by a single-objective algorithm. The optimization results demonstrate that the average frequency domain energy of the steering road feel is increased by 69.1%, the average frequency domain energy of steering sensitivity is reduced by 19.2%, and steering energy consumption is reduced by 10.8% compared to the initial value. The non-dominated sorting genetic algorithm-II (NSGA-II) shows superior comprehensive performance compared to the other two multi-objective algorithms, and the optimization performance can be further improved by setting appropriate algorithm parameters.
Explainable AI is a topic at the forefront of the field currently for reasons involving human trust in AI, correctness, auditing, knowledge transfer, and regulation. AI that is developed with reinforcement learning (RL) is especially of interest due to the non-transparency of what was learned from the environment. RL AI systems have been shown to be "brittle" with respect to the conditions it can safely operate in, and therefore ways to show correctness regardless of input values are of key interest. One way to show correctness is to verify the system using Formal Methods, known as Formal Verification. These methods are valuable, but costly and difficult to implement, leading most to instead favor other methodologies for verification that may be less rigorous, but more easily implemented. In this work, we show methods for development of an RL AI system for aspects of the strategic combat game Starcraft 2 that is performant, explainable, and formally verifiable. The resulting system performs very well on example scenarios while retaining explainability of its actions to a human operator or designer. In addition, it is shown to adhere to formal safety specifications about its behavior.
In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.