Multi-cluster Dynamics Behaviors of Cucker-Smale Model Involving Unit-Speed Constraint and State-Dependent Delay

Xinyue Han , Yicheng Liu , Zhengyang Qiao , Jun Li

Communications on Applied Mathematics and Computation ›› : 1 -23.

PDF
Communications on Applied Mathematics and Computation ›› :1 -23. DOI: 10.1007/s42967-025-00544-9
Original Paper
research-article

Multi-cluster Dynamics Behaviors of Cucker-Smale Model Involving Unit-Speed Constraint and State-Dependent Delay

Author information +
History +
PDF

Abstract

As the time lag of information exchange between individuals depends on the relative position and density, state-dependent delay would be involved in the models of collective behaviors, naturally. In this paper, we focus on the influences of state-dependent delay on the multi-cluster behavior for a Cucker-Smale model with unit-speed constraint. Considering the state-dependent delay system, we prove the existence and uniqueness of solutions, and show the multi-cluster flocking behavior. Furthermore, we present an estimation of the critical coupling strength and a critical information propagation speed. Finally, we provide numerical simulations for different coupling strengths to discuss the number of clusters.

Keywords

Cucker-Smale model / Unit-speed constraint / State-dependent delay / Multi-cluster / 34K20 / 34K60 / 82C22 / 92D50

Cite this article

Download citation ▾
Xinyue Han, Yicheng Liu, Zhengyang Qiao, Jun Li. Multi-cluster Dynamics Behaviors of Cucker-Smale Model Involving Unit-Speed Constraint and State-Dependent Delay. Communications on Applied Mathematics and Computation 1-23 DOI:10.1007/s42967-025-00544-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acebrón J, Bonilla L, Vicente C, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137-185

[2]

Ahn H. Emergent behaviors of thermodynamic Cucker-Smale ensemble with a unit-speed constraint. Discret. Contin. Dyn. Syst. Ser. B, 2023, 28(9): 4800-4825

[3]

Ahn H, Byeon J, Ha S-Y. Interplay of unit-speed constraint and singular communication in the thermodynamic Cucker-Smale model. Chaos, 2023, 33(12 123321

[4]

Carrillo JA, Fornasier M, Rosado J, Toscani G. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 2010, 42(1): 218-236

[5]

Cho H, Ha S-Y, Kim D, Noh SE. On the asymptotic persistency of a bi-cluster flocking in a Cucker-Smale ensemble. Commun. Pure Appl. Anal., 2024, 23(5): 645-673

[6]

Cho J, Ha S-Y, Huang F, Jin C, Ko D. Emergence of bi-cluster flocking for agent-based models with unit speed constraint. Anal. Appl., 2016, 14(1): 39-73

[7]

Choi S-H, Ha S-Y. Emergence of flocking for a multi-agent system moving with constant speed. Commun. Math. Sci., 2016, 14(4): 953-972

[8]

Choi S-H, Ha S-Y. Interplay of the unit-speed constraint and time-delay in Cucker-Smale flocking. J. Phys. A: Math. Theor., 2018, 59(8): 082701

[9]

Choi S-H, Seo H. Unit speed flocking model with distance-dependent time delay. Appl. Anal., 2023, 102(82338-2364

[10]

Cucker F, Dong J-G. A general collision-avoiding flocking framework. IEEE Trans. Autom. Control, 2011, 56(5): 1124-1129

[11]

Gosak M, Markovic R, Marhl M. The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons. Physica A Stat. Mech. Appl., 2012, 391(8): 2764-2770

[12]

Ha S-Y, Ko D, Zhang Y. Critical coupling strength of the Cucker-Smale model for flocking. Math. Models Methods Appl. Sci., 2017, 27(6): 1051-1087

[13]

Ha S-Y, Ko D, Zhang Y. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discret. Contin. Dyn. Syst., 2018, 38(6): 2763-2793

[14]

Haskovec J. Well posedness and asymptotic consensus in the Hegselmann-Krause model with finite speed of information propagation. Proc. Am. Math. Soc., 2021, 149(8): 3425-3437

[15]

Haskovec J. Cucker-Smale model with finite speed of information propagation: well-posedness, flocking and mean-field limit. Kinet. Relat. Models, 2023, 16(3): 394-422

[16]

Jadbabaie A, Lin J, Morse A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control, 2003, 48(6): 988-1001

[17]

Jeong, S., Ko, T., Moon, H.: Time-delayed spatial patterns in a two-dimensional array of coupled oscillators. Phys. Rev. Lett. 89, 154104 (2002). https://doi.org/10.1103/PhysRevLett.89.154104

[18]

Juang J, Liang Y-H. Avoiding collisions in Cucker-Smale flocking models under group-hierarchical multileadership. SIAM J. Appl. Math., 2018, 78(1): 531-550

[19]

Liu Y, Wu J. Flocking and asymptotic velocity of the Cucker-Smale model with processing delay. J. Math. Anal. Appl., 2014, 415(1): 53-61

[20]

Lohe MA. Non-Abelian Kuramoto models and synchronization. J. Phys. A Math. Theor., 2009, 42(39): 395101

[21]

Lohe MA. Quantum synchronization over quantum networks. J. Phys. A Math. Theor., 2010, 43(46465301

[22]

Qiao Z, Liu Y, Wang X. Multi-cluster flocking behavior analysis for a delayed Cucker-Smale model with short-range communication weight. J. Syst. Sci. Complex., 2022, 35(1137-158

[23]

Szwaykowska K, Schwartz IB, Mier-y-Teran Romero L, Heckman CR, Mox D, Hsieh MA. Collective motion patterns of swarms with delay coupling: theory and experiment. Phys. Rev. E, 2016, 93(3032307

Funding

National Natural Science Foundation of China(12371180)

Instituto Nacional de Ciência e Tecnologia Centro de Estudos das Adaptações da Biota Aquática da Amazônia(XJJC2024057)

RIGHTS & PERMISSIONS

Shanghai University

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/