Innovative PEPS Tensor Network Decomposition for Enhanced Higher Order Data Recovery
Rongfeng Huang , Shizhao Yang , Weidong Liu , Qingyuan Fang , Yonghua Zhao
Communications on Applied Mathematics and Computation ›› : 1 -24.
Innovative PEPS Tensor Network Decomposition for Enhanced Higher Order Data Recovery
Tensor decompositions (TDs) have demonstrated significant potential across various domains of science and engineering. Despite its thorough examination in quantum physics, the projected entangled pair state (PEPS) tensor network has not been extensively explored in the field of tensor completion (TC). In this study, we introduce an innovative PEPS tensor network decomposition algorithm that transforms an Nth-order tensor into a PEPS representation through
Projected entangled pair state (PEPS) / Tensor decomposition (TD) / Tensor completion (TC) / Singular value decomposition (SVD) / Proximal alternating minimization (PAM) / 65K05 / 90C46
| [1] |
|
| [2] |
Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26, 2466–2479 (2017). https://doi.org/10.1109/tip.2017.2672439 |
| [3] |
|
| [4] |
Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970). https://doi.org/10.1007/bf02310791 |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Huang, R., Liu, S., Zhang, X., Liu, Y., Zhao, Y.: Projected entangled pair state tensor network for colour image and video completion. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, pp. 26–38 (2023). https://doi.org/10.1007/978-981-99-1645-0_3 |
| [10] |
Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86 (2010). https://doi.org/10.1145/1864708.1864727 |
| [11] |
|
| [12] |
|
| [13] |
Liu, D., Sacchi, M.D., Chen, W.: Efficient tensor completion methods for 5-D seismic data reconstruction: low-rank tensor train and tensor ring. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2022). https://doi.org/10.1109/tgrs.2022.3179275. (Accessed 2024-11-23) |
| [14] |
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013). https://doi.org/10.1109/tpami.2012.39 |
| [15] |
|
| [16] |
Long, Z., Zhu, C., Liu, J., Liu, Y.: Bayesian low rank tensor ring for image recovery. IEEE Trans. Image Process. 30, 3568–3580 (2021). https://doi.org/10.1109/tip.2021.3062195 |
| [17] |
|
| [18] |
Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014). https://doi.org/10.1016/j.aop.2014.06.013 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Wang, W., Aggarwal, V., Aeron, S.: Tensor completion by alternating minimization under the tensor train (TT) model. arXiv:1609.05587 (2016) |
| [27] |
Wang, W., Aggarwal, V., Aeron, S.: Efficient low rank tensor ring completion. In: IEEE International Conference on Computer Vision, pp. 5698–5706 (2017). https://doi.org/10.1109/ICCV.2017.607 |
| [28] |
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/tip.2003.819861 |
| [29] |
Wu, Z.-C., Huang, T.-Z., Deng, L.-J., Dou, H.-X., Meng, D.: Tensor wheel decomposition and its tensor completion application. In: Proceedings of the 36th International Conference on Neural Information Processing Systems, pp. 27008–27020 (2024) |
| [30] |
|
| [31] |
Yuan, L., Cao, J., Zhao, X., Wu, Q., Zhao, Q.: Higher-dimension tensor completion via low-rank tensor ring decomposition. In: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1071–1076 (2018). https://doi.org/10.23919/APSIPA.2018.8659708 |
| [32] |
Yuan, L., Li, C., Mandic, D., Cao, J., Zhao, Q.: Tensor ring decomposition with rank minimization on latent space: an efficient approach for tensor completion. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 9151–9158 (2019). https://doi.org/10.1609/aaai.v33i01.33019151 |
| [33] |
Yuan, L., Zhao, Q., Cao, J.: Completion of high order tensor data with missing entries via tensor-train decomposition. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, pp. 222–229. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_24 |
| [34] |
Zhang, X., Gong, Y., Qiao, C., Jing, W.: Multiview deep learning based on tensor decomposition and its application in fault detection of overhead contact systems. Vis. Comput. 38, 1457–1467 (2022). https://doi.org/10.1007/s00371-021-02080-y |
| [35] |
Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014). https://doi.org/10.1109/CVPR.2014.485 |
| [36] |
Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1751–1763 (2015). https://doi.org/10.1109/tpami.2015.2392756 |
| [37] |
Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. arXiv:1606.05535 (2016) |
| [38] |
Zheng, Y.-B., Huang, T., Zhao, X., Zhao, Q., Jiang, T.-X.: Fully-connected tensor network decomposition and its application to higher-order tensor completion. Proceedings of the AAAI Conference on Artificial Intelligence 35(12), 11071–11078 (2021). https://doi.org/10.1609/aaai.v35i12.17321 |
Shanghai University
/
| 〈 |
|
〉 |