PDF
Abstract
In this paper, we derive a nonisospectral modified Jaulent-Miodek (mJM) hierarchy and construct the bi-Hamiltonian structure of its corresponding isospectral hierarchy via the trace identity. To generate integrable couplings of the mJM hierarchy, we introduce a new matrix Lie algebra g and its loop algebra \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tilde{g}$$\end{document}
, and further obtain the bi-Hamiltonian structure of the resulting integrable couplings using the quadratic-form identity. Moreover, by extending the matrix Lie algebra g to a non-semisimple Lie algebra \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{g}$$\end{document}
, we derive a nonisospectral multi-component integrable coupling hierarchy, and establish the Hamiltonian structure of its corresponding isospectral hierarchy using the \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Z_{N}^{\varepsilon }$$\end{document}
-trace identity.
Keywords
Nonisospectral integrable hierarchy
/
Hamiltonian structure
/
Lie algebra
/
Multi-component integrable hierarchy
/
37K05
/
37K10
/
37K40
/
35Q53
Cite this article
Download citation ▾
Zhenbo Wang, Yufeng Zhang.
Multi-component Integrable Couplings and Bi-Hamiltonian Structures of the Modified Jaulent-Miodek Hierarchy.
Communications on Applied Mathematics and Computation 1-22 DOI:10.1007/s42967-025-00535-w
| [1] |
Ablowitz MA, Clarkson PA. Solitons, Nonlinear Evolution Equations and Inverse Scattering, 1991, Cambridge. Cambridge University Press.
|
| [2] |
Antonowicz M, Fordy AP. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Commun. Math. Phys., 1989, 124: 465-486.
|
| [3] |
Chen, J.B. Geng, X.G.: Algebro-geometric solution to the modified Kadomtsev-Petviashvili equation. J. Phys. Soc. Jpn. 74(8), 2217–2222 (2005)
|
| [4] |
Chen JB, Geng XG. Decomposition to the modified Jaulent-Miodek hierarchy. Chaos, Soliton Fract., 2006, 30: 797-803.
|
| [5] |
Drinfeld VG, Sokolov VV. Equations of Korteweg-de Vries type and simple Lie algebras. Soviet Math. Dokl., 1981, 23: 457-462
|
| [6] |
Estévz, P.G., Lejarreta, J.D., Savdón, C.: Non-isospectral 1+1 hierarchies arising from a Camassa-Holm hierarchy in 2+1 dimensions. J. Nonlinear Math. Phys. 18(1), 9–28 (2011)
|
| [7] |
Estévz PG, Savdón C. Miura-reciprocal transformations for Non-isospectral Camassa-Holm hierarchies in 2+1 dimensions. J. Nonlinear Math. Phys., 2013, 20(4): 552-564.
|
| [8] |
Geng XG, Ma WX. A multipotential generalization of the nonlinear diffusion equation. J. Phys. Soc. Jpn., 2000, 69(4): 985-986.
|
| [9] |
Gu X, Ma WX. On a class of coupled Hamiltonian operators and their integrable hierarchies with two potentials. Math. Methods Appl. Sci., 2018, 41(10): 3779-3789.
|
| [10] |
Guo FK, Zhang YF. A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling. J. Math. Phys., 2003, 44: 5793-803.
|
| [11] |
Hu XB. A powerful approach to generate new integrable systems. J. Phys. A., 1994, 27(7): 2497-2514.
|
| [12] |
Ma WX. An approach for constructing non-isospectral hierarchies of evolution equations. J. Phys. A: Math. Gen., 1992, 25: 719-726.
|
| [13] |
Ma WX. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math., 1992, 13(1): 79
|
| [14] |
Ma, W.X.: Integrable couplings of soliton equations by perturbations I: a general theory and application to the KdV hierarchy. Methods Appl. Anal. 7, 21–55 (2000)
|
| [15] |
Ma WX. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A, 2003, 316: 72-76.
|
| [16] |
Ma WX. Integrable couplings of vector AKNS soliton equations. J. Math. Phys., 2005, 46033507
|
| [17] |
Ma WX. Four-component integrable hierarchies and their Hamiltonian structures. Commun. Nonlinear Sci. Numer. Simul., 2023, 126107460
|
| [18] |
Ma WX. Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos, Soliton Fract., 2024, 180114539
|
| [19] |
Ma WX, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos, Soliton Fract., 1996, 7: 1227-50.
|
| [20] |
Ma WX, Fuchssteiner B. The bi-Hamiltonian structures of the perturbation equations of KdV hierarchy. Phys. Lett. A, 1996, 213: 49-55.
|
| [21] |
Ma WX, Huang YH, Wang FD, Zhang Y, Ding LY. Binary Darboux transformation of vector nonlocal reverse-space nonlinear Schrödinger equations. Int. J. Geom. Methods Mod. Phys., 2024, 21: 2450182.
|
| [22] |
Mcanally M, Ma WX. Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. Nonlinear Anal. Theor., 2020, 191111629
|
| [23] |
Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: the Inverse Scattering Method. Consultants Bureau/A Division of Plenum Publishing Corporation, New York (1984)
|
| [24] |
Qiao ZJ. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Phys. A, 1998, 252: 377-387.
|
| [25] |
Shen SF, Li CX, Jin YY, Ma WX. Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling. J. Math. Phys., 2018, 59103503
|
| [26] |
Tu GZ. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys., 1989, 30: 330-338.
|
| [27] |
Tu GZ. Infinitesimal canonical transformations of generalised Hamiltonian equations. J. Phys. A: Math. Gen., 1992, 15: 277
|
| [28] |
Wang, H.F., He, B.Y.: 2+1 Dimensional nonisospectral super integrable hierarchies associated with a class of extended Lie superalgebras. Chaos, Soliton Fract. 171, 113443 (2023)
|
| [29] |
Wang HF, Zhang YF. A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul., 2021, 99105822
|
| [30] |
Wang HF, Zhang YF. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul., 2022, 105(9106075
|
| [31] |
Wang HF, Zhang YF, Li CZ. Multi-component super integrable Hamiltonian hierarchies. Phys. D, 2023, 456133918
|
| [32] |
Wang ZB, Wang HF. Integrable couplings of two expanded non-isospectral soliton hierarchies and their bi-Hamiltonian structures. Int. J. Geom. Methods Mod. Phys., 2022, 19: 2250160
|
| [33] |
Wang ZB, Wang HF, Zhang YF. A novel kind of a multicomponent hierarchy of discrete soliton equations and its application. Theor. Math. Phys., 2023, 2153): 823-836.
|
| [34] |
Wang ZB, Zhang YF, Sun YM. The ∂¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\bar{\partial }$$\end{document}-dressing method, B¨\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ddot{{\rm B}}$$\end{document}acklund transformation and exact solutions for a (3+1)-dimensional generalized Ito equation. J. Comput. Appl. Math., 2026, 473116817
|
| [35] |
Xia TC, You FC. A generalized MKdV hierarchy, tri-Hamiltonian structure, higher-order binary constrained flows and its integrable couplings system. Chaos, Soliton Fract., 2006, 28: 938-48.
|
| [36] |
Xu, X.X.: An integrable coupling hierarchy of the Mkdv-integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 216(1), 344–53 (2010)
|
| [37] |
Yu JD, Wang HF, Li CZ. A kind of multi-component nonisospectral generalized nonlinear Schro¨\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ddot{\rm o }$$\end{document}dinger hierarchies. Theor. Math. Phys., 2023, 215: 837-861.
|
| [38] |
Zhang J. The integrable couplings of the Modified Jaulent-Miodek hierarchy and its Hamiltonian structure. Chaos, Soliton Fract., 2009, 40: 138-144.
|
| [39] |
Zhang, Y.F.: A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. Chaos, Soliton Fract. 21, 305–310 (2004)
|
| [40] |
Zhang YF, Fan EG. Hamiltonian structure of the integrable coupling of the Jaulent-Miodek hierarchy. Phys. Lett. A, 2006, 348: 180-186.
|
| [41] |
Zhang YF, Fan EG, Tam H. A few expanding Lie algebras of the Lie algebra A1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{1}$$\end{document} and applications. Physics Letters A, 2006, 359(5): 471-480.
|
| [42] |
Zhang YF, Mei JQ, Guan HY. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys., 2019, 147103538
|
| [43] |
Zhang YF, Rui WJ. A few continuous and discrete dynamical systems. Rep. Math. Phys., 2016, 70: 19-32.
|
| [44] |
Zhang YF, Tam H. A few subalgebras of the Lie algebra A3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{3}$$\end{document} and a direct approach for obtaining integrable couplings. Chaos, Soliton Fract., 2007, 33(4): 1424-1432.
|
| [45] |
Zhang YF, Tam H. Generation of nonlinear evolution equations by reductions of the self-dual Yang-Mills equations. Commun. Theor. Phys., 2014, 61: 203
|
| [46] |
Zhang YF, Zhang XZ, Wang Y, Liu JG. Upon generating discrete expanding integrable models of the Toda lattice systems and infinite conservation laws. Z. Naturf. A, 2017, 72(1): 77-86.
|
| [47] |
Zhao SY, Zhang YF, Zhou J, Zhang HY. Coverings and nonlocal symmetries as well as fundamental solutions of nonlinear equations derived from the nonisospectral AKNS hierarchy. Commun. Nonlinear Sci. Numer. Simul., 2022, 114106622
|
| [48] |
Zhou ZX, Ma WX. Coupled integrable systems associated with a polynomial spectral problem and their Virasoro symmetry algebras. Prog. Theor. Phys., 1996, 96: 449-457.
|
Funding
National natural Science Foundation of China(11971475)
RIGHTS & PERMISSIONS
Shanghai University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.