A New C-Eigenvalue Localization Interval for Piezoelectric-Type Tensors
Yangyang Xu , Guinan He , Licai Shao , Zimo Chen
Communications on Applied Mathematics and Computation ›› : 1 -14.
A New C-Eigenvalue Localization Interval for Piezoelectric-Type Tensors
Given a piezoelectric-type tensor, its C-eigenvalues which play an important role in piezoelectric effect and converse piezoelectric effect of physics are always real and exist. In this paper, a new C-eigenvalue localization interval for piezoelectric-type tensors is presented. The newly proposed C-eigenvalue localization interval for piezoelectric-type tensors improves the previous one in Che et al. (Appl Math Lett 89: 41–49, 2019). To further examine the effectiveness and validity of the main result, some numerical experiments are considered by comparing with some previously known results.
Localization interval / C-eigenvalues / Piezoelectric-type tensors / 15A69 / 15A18 / 15A42
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Chen, Y.N., Jakli, A., Qi, L.Q.: Spectral analysis of piezoelectric tensors. arXiv:1703.07937v1 (2017) |
| [5] |
|
| [6] |
|
| [7] |
Gaeta, G., Virga, E.: Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016) |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Kholkin, A.L., Pertsev, N.A., Goltsev, A.V.: Piezoelectricity and crystal symmetry. In: Safari, A., Akdogän, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications, Springer, New York (2008) |
| [14] |
|
| [15] |
Lei, X.Q.: αβΩ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _\beta \Omega $$\end{document}-inclusion sets for general C-eigenvalues of a general piezoelectric-type tensor. Linear Multilinear Algebra 69, 3043–3068 (2021) |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Xu, Y.Y., Shao, L.C., He, G.N., Chen, Z.M.: New localization theorems for the M-eigenvalues of a fourth-order partially symmetric tensor. J. Ind. Manag. Optim. 21(8), 5535-5555 (2025) |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Zhao, J.X.: A new Z-eigenvalue localization set for tensors. J. Inequal. Appl. 85 (2017) |
Shanghai University
/
| 〈 |
|
〉 |