A New C-Eigenvalue Localization Interval for Piezoelectric-Type Tensors

Yangyang Xu , Guinan He , Licai Shao , Zimo Chen

Communications on Applied Mathematics and Computation ›› : 1 -14.

PDF
Communications on Applied Mathematics and Computation ›› :1 -14. DOI: 10.1007/s42967-025-00533-y
Original Paper
research-article

A New C-Eigenvalue Localization Interval for Piezoelectric-Type Tensors

Author information +
History +
PDF

Abstract

Given a piezoelectric-type tensor, its C-eigenvalues which play an important role in piezoelectric effect and converse piezoelectric effect of physics are always real and exist. In this paper, a new C-eigenvalue localization interval for piezoelectric-type tensors is presented. The newly proposed C-eigenvalue localization interval for piezoelectric-type tensors improves the previous one in Che et al. (Appl Math Lett 89: 41–49, 2019). To further examine the effectiveness and validity of the main result, some numerical experiments are considered by comparing with some previously known results.

Keywords

Localization interval / C-eigenvalues / Piezoelectric-type tensors / 15A69 / 15A18 / 15A42

Cite this article

Download citation ▾
Yangyang Xu, Guinan He, Licai Shao, Zimo Chen. A New C-Eigenvalue Localization Interval for Piezoelectric-Type Tensors. Communications on Applied Mathematics and Computation 1-14 DOI:10.1007/s42967-025-00533-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bu CJ, Jin XQ, Li HF, Deng CL. Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl., 2017, 512: 234-248

[2]

Bu CJ, Wei YP, Sun LZ, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl., 2015, 480: 168-175

[3]

Che HT, Chen HB, Wang YJ. C-eigenvalue inclusion theorems for piezoelectric-type tensors. Appl. Math. Lett., 2019, 89: 41-49

[4]

Chen, Y.N., Jakli, A., Qi, L.Q.: Spectral analysis of piezoelectric tensors. arXiv:1703.07937v1 (2017)

[5]

Chen YN, Qi LQ, Virga EG. Octupolar tensors for liquid crystals. J. Phys. A, 2017, 51 025206

[6]

Curie J, Curie P. Développement, par pression, de lélectricité polaire dans les cristaux hémièdres à faces inclinées. Comptes rendus., 1880, 91: 294-295

[7]

Gaeta, G., Virga, E.: Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016)

[8]

Haussähl S. Physical Properties of Crystals: an Introduction, 2007, Weinheim, Wiley-VCH Verlag

[9]

He J, Li CQ, Wei YM. M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity. Appl. Math. Lett., 2020, 102 106137

[10]

He J, Liu YM, Xu GJ. New S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S$$\end{document}-type inclusion theorems for the M-eigenvalues of a 4th-order partially symmetric tensor with applications. Appl. Math. Comput., 2021, 398125992

[11]

He J, Liu YM, Xu GJ. An S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S$$\end{document}-type inclusion set for C-eigenvalues of a piezoelectric-type tensor. Appl. Math. Lett., 2021, 121 107448

[12]

Jerphagnon J. Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities. Phys. Rev. B, 1970, 2: 1091

[13]

Kholkin, A.L., Pertsev, N.A., Goltsev, A.V.: Piezoelectricity and crystal symmetry. In: Safari, A., Akdogän, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications, Springer, New York (2008)

[14]

Kulagin IYA, Ganeev RA, Tugushev RI, Usmanov T. Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$_{3}$$\end{document} nonlinear optical crystals. Quantum Electron., 2004, 34: 657

[15]

Lei, X.Q.: αβΩ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _\beta \Omega $$\end{document}-inclusion sets for general C-eigenvalues of a general piezoelectric-type tensor. Linear Multilinear Algebra 69, 3043–3068 (2021)

[16]

Li CQ, Chen Z, Li YT. A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl., 2015, 481: 36-53

[17]

Li CQ, Li YT, Kong X. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl., 2014, 21: 39-50

[18]

Li CQ, Liu YJ, Li YT. C-eigenvalues intervals for piezoelectric-type tensors. Appl. Math. Comput., 2019, 358: 244-250

[19]

Li CQ, Zhou JJ, Li YT. A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra, 2016, 64: 727-736

[20]

Li SH, Li CQ, Li YT. M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor. J. Comput. Appl. Math., 2019, 356: 391-401

[21]

Lovett DR. Tensor Properties of Crystals, 19892Bristol, Institute of Physics Publishing

[22]

Nye JF. Physical Properties of Crystals: Their Representation by Tensors and Matrices, 19852Oxford, Clarendon Press

[23]

Qi LQ. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 2005, 40: 1302-1324

[24]

Wang WJ, Chen HB, Wang YJ. A new C-eigenvalue interval for piezoelectric-type tensors. Appl. Math. Lett., 2020, 100 106035

[25]

Xiong L, Liu JZ. A new C-eigenvalue localisation set for piezoelectric-type tensors. East Asian J. Appl. Math., 2020, 10: 123-134

[26]

Xu YY, Shao LC, He GN. New S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S$$\end{document}-type localization sets for C-eigenvalues of a piezoelectric-type tensor. Appl. Math. Lett., 2024, 150 108955

[27]

Xu, Y.Y., Shao, L.C., He, G.N., Chen, Z.M.: New localization theorems for the M-eigenvalues of a fourth-order partially symmetric tensor. J. Ind. Manag. Optim. 21(8), 5535-5555 (2025)

[28]

Xu YY, Zheng B, Zhao RJ. Some results on Brauer-type and Brualdi-type eigenvalue inclusion sets for tensors. Comput. Appl. Math., 2019, 38: 74

[29]

Xu YY, Zheng B, Zhao RJ. Some improved Ky Fan type eigenvalue inclusion sets for tensors. Calcolo, 2020, 57: 40

[30]

Zeng WL, Wang QW. Improvement of S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S$$\end{document}-type localization sets of C-eigenvalues for piezoelectric-type tensors. Appl. Math. Lett., 2025, 160 109357

[31]

Zhao, J.X.: A new Z-eigenvalue localization set for tensors. J. Inequal. Appl. 85 (2017)

RIGHTS & PERMISSIONS

Shanghai University

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/