Error Bounds of Boole-Type Inequalities for Caputo Fractional Operator with Their Computational Analysis and Applications

Abdul Mateen , Hüseyin Budak , Ghulam Hussain Tipu , Wali Haider , Asia Shehzadi

Communications on Applied Mathematics and Computation ›› : 1 -19.

PDF
Communications on Applied Mathematics and Computation ›› :1 -19. DOI: 10.1007/s42967-025-00530-1
Original Paper
research-article

Error Bounds of Boole-Type Inequalities for Caputo Fractional Operator with Their Computational Analysis and Applications

Author information +
History +
PDF

Abstract

This paper establishes Boole-type inequalities for n-times differentiable convex functions within the framework of fractional calculus, utilizing the Caputo fractional operator to generalize classical results. To achieve this, a novel integral identity is first established using the Caputo fractional integral, which serves as a foundational tool for deriving several new Boole-type inequalities. The study extends these inequalities to encompass broader classes of functions, including bounded and Lipschitzian functions, employing fractional integrals to derive refined results. Key contributions include the establishment of generalized error bounds for higher-order fractional Boole’s formula and their explicit dependence on the fractional differentiation of order

α
. The principal advancement of this work lies in deriving distinct inequality classes corresponding to function differentiability for different values of n through the parametric selection of the positive integer n. The present research provides sharp error estimates for Boole’s rule by employing Hölder’s inequality and the power mean inequality. Numerical examples and graphical analysis are provided to illustrate the practical significance of the results. Furthermore, applications to special functions such as the Mittag-Leffler function and the
q
-polygamma function, revealing their effectiveness in handling fractional-order models involving monotonic or convex behavior are presented. These approaches can advance the understanding of Boole’s formula and enhance its error bounds within fractional frameworks.

Keywords

Boole-type inequalities / Caputo fractional operator / Error bounds / Convex function / Lipschitzian functions / Bounded functions / 26D10 / 26D15 / 26A51

Cite this article

Download citation ▾
Abdul Mateen, Hüseyin Budak, Ghulam Hussain Tipu, Wali Haider, Asia Shehzadi. Error Bounds of Boole-Type Inequalities for Caputo Fractional Operator with Their Computational Analysis and Applications. Communications on Applied Mathematics and Computation 1-19 DOI:10.1007/s42967-025-00530-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad H, Seadawy AR, Khan TA, Thounthong P. Analytic approximate solutions for some nonlinear parabolic dynamical wave equations. J. Taibah Univ. Sci., 2020, 14(1): 346-358.

[2]

Ahmad I, Ahmad H, Abouelregal AE, Thounthong P, Abdel-Aty M. Numerical study of integer-order hyperbolic telegraph model in physical and related sciences. Eur. Phys. J. Plus, 2020, 135(1): 1-14

[3]

Ali, M.A., Mateen, A., Feckan, M.: Study of quantum Ostrowski-type inequalities for differentiable convex functions. Ukr. Math. J. 75(1), 5–28 (2023)

[4]

Almeida R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul., 2017, 44: 460-481.

[5]

Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)

[6]

Batir N. Monotonicity properties of q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q$$\end{document}-digamma and q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q$$\end{document}-trigamma functions. J. Approx. Theory, 2015, 192: 336-346.

[7]

Budak H, Hezenci F, Kara H. On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral. Math. Methods Appl. Sci., 2021, 44(30): 12522-12536.

[8]

Budak H, Hezenci F, Kara H. On generalized Ostrowski, Simpson, and Trapezoidal-type inequalities for co-ordinated convex functions via generalized fractional integrals. Adv. Differ. Equ., 2021, 2021: 1-32.

[9]

Demir I. A new approach of Milne-type inequalities based on proportional Caputo-hybrid operator. J. Adv. Appl. Comput. Math., 2023, 10: 102-119.

[10]

Diethelm K, Ford NJ. The Analysis of Fractional Differential Equations, 2010, Berlin. Springer.

[11]

Dragomir, S.S., Agarwal, R.P., Cerone, P.: On Simpson’s inequality and applications. J. Inequal. Appl. 2000(6), 891030 (2000)

[12]

Dragomir SS. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math., 1999, 30: 53-58.

[13]

Dragomir, S.S., Pearce, C.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University, Melbourne (2000)

[14]

Dwilewicz, R.J.: A short history of convexity. Differential Geometry and Dynamical Systems 11, 112–129 (2009)

[15]

Emin ÖM, Butt SI, Ekinci A, Nadeem M. Several new integral inequalities via Caputo fractional integral operators. Filomat, 2023, 37(6): 1843-1854.

[16]

Erden, S., Iftikhar, S., Kumam, P., Awan, M.U.: Some Newton-like inequalities with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(4), 1–13 (2020)

[17]

Farid, G., Naqvi, S., Javed, A.: Hadamard and Fejér Hadamard inequalities and related results via Caputo fractional derivatives. Bull. Math. Anal. Appl. 9(3), 16–30 (2017)

[18]

Gao S, Shi W. On new inequalities of Newton’s type for functions whose second derivatives’ absolute values are convex. Int. J. Pure Appl. Math., 2012, 74(1): 33-41

[19]

Gibb D. A Course in Interpolation and Numerical Integration for the Mathematical Laboratory, 1915, Limited, London. G. Bell & Sons

[20]

Gorenflo, R., Mainardi, F.: Essentials of Fractional Calculus. Maphysto Center (2000)

[21]

Gorenflo R, Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order, 1997, Wien. Springer

[22]

Guariglia E. Riemann zeta fractional derivative—functional equation and link with primes. Adv. Differ. Equ., 2019, 2019: 1-15.

[23]

Hezenci F, Budak H, Kara H. New version of fractional Simpson-type inequalities for twice differentiable functions. Adv. Differ. Equ., 2021, 2021: 460

[24]

Hezenci, F., Budak, H., Kösem, P.: On new version of Newton’s inequalities for Riemann-Liouville fractional integrals. Rocky Mountain J. Math. 53(1), 49–64 (2023)

[25]

Jain S, Mehrez K, Baleanu D, Agarwal P. Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications. Mathematics, 2019, 7(2): 163

[26]

Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

[27]

Li C, Cai M. Theory and Numerical Approximations of Fractional Integrals and Derivatives, 2019, Philadelphia. SIAM.

[28]

Magin RL. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl., 2010, 59(5): 1586-1593.

[29]

Mateen, A., Zhang, Z., Toseef, M., Ali, M.A.: A new version of Boole’s formula-type inequalities in multiplicative calculus with application to quadrature formula. Bull. Belg. Math. Soc. Simon Stevin, 541–562 (2024)

[30]

Mateen A, Zhang Z, Ali MA. Some Milne’s rule-type inequalities for convex functions with their computational analysis on quantum calculus. Filomat, 2024, 38(10): 3329-3345.

[31]

Mateen S, Özcan S, Zhang Z, Mohsin BB. On Newton-Cotes formula-type inequalities for multiplicative generalized convex functions via Riemann-Liouville fractional integrals. Fractal Fract., 2024, 8: 541.

[32]

Mateen, A., Zhang, Z., Budak, H., Özcan, S.: Some novel inequalities of Weddle’s formula type for Riemann-Liouville fractional integrals with their applications to numerical integration. Chaos Solitons Fractals 192, 115973 (2025)

[33]

Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1993, New York. John Wiley

[34]

Ó Searcóid, M.: Metric Spaces. Springer-Verlag, Berlin (2006)

[35]

Oldham KB, Spanier J. The Fractional Calculus, 1974, New York. Academic Press

[36]

Park J. On Simpson-like type integral inequalities for differentiable preinvex functions. Appl. Math. Sci., 2013, 7(121): 6009-6021. DOI:

[37]

Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications, 1998, Amsterdam. Elsevier198

[38]

Podlubny I. Fractional Differential Equations, 1999, San Diego. Academic Press

[39]

Ragusa MA. Commutators of fractional integral operators on vanishing-morrey spaces. J. Glob. Optim., 2008, 40: 361-368.

[40]

Salem A. Complete monotonicity properties of functions involving q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q$$\end{document}-gamma and q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q$$\end{document}-digamma functions. Math. Inequal. Appl., 2014, 17(3): 801-811. DOI:

[41]

Zaslavsky GM. Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 2002, 371: 461-580.

[42]

Zhan X, Mateen A, Toseef M, Ali MA. Some Simpson- and Ostrowski-type integral inequalities for generalized convex functions in multiplicative calculus with their computational analysis. Mathematics, 2024, 12(11): 1721.

RIGHTS & PERMISSIONS

Shanghai University

PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

/