A New Stabilized Virtual Element Method for the Convection-Diffusion Equation

Sudheer Mishra , E. Natarajan

Communications on Applied Mathematics and Computation ›› : 1 -34.

PDF
Communications on Applied Mathematics and Computation ›› :1 -34. DOI: 10.1007/s42967-025-00529-8
Original Paper
research-article

A New Stabilized Virtual Element Method for the Convection-Diffusion Equation

Author information +
History +
PDF

Abstract

We present a novel stabilized virtual element approximation for the convection-diffusion equation on polygonal meshes in convection-dominated regimes. We introduce a local projection-based stabilization technique to address convection-dominated regimes. The proposed stabilization technique relies on the streamline flow. We establish the well-posedness of the discrete problem. Furthermore, we have shown optimal convergence estimates in the energy norm. Notably, our proposed stabilization method offers simplicity in implementation and circumvents the need for second-order derivative terms. Additionally, we have outlined the implementation details of our method. To validate our theoretical findings, we have conducted several numerical experiments. Numerical results show the robustness of the proposed method with respect to diffusion parameters, confirming optimal convergence rates.

Keywords

Virtual element / Local projection stabilization (LPS) / Convection-diffusion / General polygons / 65N12 / 65N30

Cite this article

Download citation ▾
Sudheer Mishra, E. Natarajan. A New Stabilized Virtual Element Method for the Convection-Diffusion Equation. Communications on Applied Mathematics and Computation 1-34 DOI:10.1007/s42967-025-00529-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad B, Alsaedi A, Brezzi F, Marini LD, Russo A. Equivalent projectors for virtual element methods. Comput. Math. Appl., 2013, 66(3): 376-391.

[2]

Antonietti PF, Da Veiga LB, Scacchi S, Verani M. A C1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${C}^{1}$$\end{document} virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal., 2016, 54(1): 34-56.

[3]

Antonietti PF, Vacca G, Verani M. Virtual element method for the Navier-Stokes equation coupled with the heat equation. IMA J. Numer. Anal., 2022, 11: 1-34

[4]

Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo, 2001, 38(4): 173-199.

[5]

Benedetto MF, Berrone S, Borio A, Pieraccini S, Scialo S. Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng., 2016, 311: 18-40.

[6]

Berrone S, Borio A, Manzini G. SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng., 2018, 340: 500-529.

[7]

Borio, A., Busetto, M., Marcon, F.: SUPG-stabilized stabilization-free VEM: a numerical investigation. arXiv:2310.09180 (2023)

[8]

Braack M, Burman E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal., 2006, 43(6): 2544-2566.

[9]

Brenner SC, Scott RL. The Mathematical Theory of Finite Element Methods, 2008, Berlin. Springer.

[10]

Brooks AN, Hughes T. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 1982, 32: 199-259.

[11]

Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199(17/18/19/20), 1114–1123 (2010)

[12]

Burman E, Fernandez MA. Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence. Numer. Math., 2007, 107: 39-77.

[13]

Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193(15/16), 1437–1453 (2004)

[14]

Cangiani A, Manzini G, Sutton OJ. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal., 2017, 37(3): 1317-1354. DOI:

[15]

Chen L, Huang J. Some error analysis on virtual element methods. Calcolo, 2017, 55: 5

[16]

Codina, R.: On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 188(1/2/3), 61–82 (2000)

[17]

Codina R. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math., 2008, 58: 264-283.

[18]

Da Veiga, L.B., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

[19]

Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

[20]

Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

[21]

Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential equations. Lecture Notes in Computational Science and Engineering, 114, pp. 39–71. Springer, Cham (2016)

[22]

Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(04), 729–750 (2016)

[23]

Da Veiga, L.B., Dassi, F., Lovadina, C., Vacca, G.: SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis. ESAIM Math. Model. Numer. Anal. 55(5), 2233–2258 (2021)

[24]

Da Veiga, L.B., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems. Springer, Berlin (2014)

[25]

Da Veiga, L.B., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. J. Numer. Anal. 56(3), 1210–1242 (2018)

[26]

Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)

[27]

Franca, L.P., Valentin, F.: On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Eng. 190(13/14), 1785–1800 (2000)

[28]

Ganesan S, Tobiska L. Stabilization by local projection for convection-diffusion and incompressible flow problems. J. Sci. Comput., 2010, 43(3): 326-342.

[29]

Guo, J., Feng, M.: A new projection-based stabilized virtual element method for the Stokes problem. J. Sci. Comput. 85(1), 16 (2020)

[30]

John V, Maubach JM, Tobiska L. Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math., 1997, 78(2): 165-188.

[31]

John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3/4), 475–494 (2008)

[32]

Knobloch, P.: Improvements of the Mizukami-Hughes method for convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 196(1/2/3), 579–594 (2006)

[33]

Knobloch P. A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal., 2010, 48(2): 659-680.

[34]

Knobloch, P., Lube, G.: Local projection stabilization for advection-diffusion-reaction problems: one-level vs. two-level approach. Appl. Numer. Math. 59(12), 2891–2907 (2009)

[35]

Kuzmin D. Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys., 2009, 228(7): 2517-2534.

[36]

Kuzmin, D., Moller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Methods Appl. Mech. Eng. 193(45/46/47), 4915–4946 (2004)

[37]

Matthies G, Skrzypacz P, Tobiska L. Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal., 2008, 32: 90-105. DOI:

[38]

Mishra S, Natarajan E. A streamline-derivative-based local projection stabilization virtual element method for nonlinear convection-diffusion-reaction equation. Calcolo, 2023, 60(4): 46

[39]

Mishra S, Natarajan E. Local projection stabilization virtual element method for the convection-diffusion equation with nonlinear reaction term. Comput. Math. Appl., 2023, 152: 181-198.

[40]

Mishra S, Natarajan E. A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem. Adv. Comput. Math., 2024, 50(6): 106

[41]

Yang L, Feng M. A local projection stabilization virtual element method for convection-diffusion-reaction equation. Appl. Math. Comput., 2021, 411126536

RIGHTS & PERMISSIONS

Shanghai University

PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

/