PDF
Abstract
In this paper, we developed novel fourth-order Runge-Kutta type exponential time differencing (ETD) A-stable and L-stable methods for space-fractional nonlinear reaction-diffusion equations with initial non-smooth or smooth data. Based on compact finite differences, a fourth-order technique is used for spatial discretization, while ETD is employed to discretize the time. Our novel numerical schemes have the benefit of explicitly handling the nonlinear term. The well-known issue of numerical instability related to computing the matrix exponential is addressed using the real single-pole rational approximation, namely the restricted Padé approximation approach. The corresponding ETD-A-stable and L-stable methods are obtained. Convergence, error estimates, and stability analysis of the suggested approaches are studied theoretically. Under a global Lipschitz continuity assumption, the unconditional \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document}
numerical stability is established. Moreover, the convergence order of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {O}}(k^4)$$\end{document}
for the derived methods is also studied in the norm \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2$$\end{document}
. Numerical experiments demonstrate the advantages of the methods in computational accuracy, efficiency, and reliability.
Keywords
Riesz derivative
/
Reaction-diffusion equation
/
Allen-Cahn equation
/
Exponential time-differencing (ETD) method
/
The damped nonlinear fractional Schrödinger equations
/
Numerical method
/
Stability
/
26A33
/
35K57
/
65M12
/
65M22
Cite this article
Download citation ▾
Shahzad Sarwar.
High-Order Time-Stepping Methods for Two-Dimensional Space-Fractional Reaction-Diffusion Models.
Communications on Applied Mathematics and Computation 1-28 DOI:10.1007/s42967-025-00528-9
| [1] |
Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 1979, 27(6): 1085-1095.
|
| [2] |
Alt R. A-stable one-step methods with step-size control for stiff systems of ordinary differential equations. J. Comput. Appl. Math., 1978, 4(1): 29-35.
|
| [3] |
Alzahrani SS, Khaliq AQM, Biala TA, Furati KM. Fourth-order time stepping methods with matrix transfer technique for space-fractional reaction-diffusion equations. Appl. Numer. Math., 2019, 146: 123-144.
|
| [4] |
Asante-Asamani EO, Khaliq AQM, Wade BA. A real distinct poles exponential time differencing scheme for reaction-diffusion systems. J. Comput. Appl. Math., 2016, 299: 24-34.
|
| [5] |
Beylkin G, Keiser JM, Vozovoi L. A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys., 1998, 147(2): 362-387.
|
| [6] |
Cao D, Li C. Quenching phenomenon in the Caputo-Hadamard time-fractional Kawarada problem: analysis and computation. Math. Comput. Simul., 2025, 233: 21-38.
|
| [7] |
Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)
|
| [8] |
Company R, Egorova VN, Jódar L. Conditional full stability of positivity-preserving finite difference scheme for diffusion-advection-reaction models. J. Comput. Appl. Math., 2018, 341: 157-168.
|
| [9] |
Cox SM, Matthews PC. Exponential time differencing for stiff systems. J. Comput. Phys., 2002, 176(2): 430-455.
|
| [10] |
Dahlquist GG. A special stability problem for linear multistep methods. BIT Numer. Math., 1963, 3(1): 27-43.
|
| [11] |
Ding H. The construction of an optimal fourth-order fractional-compact-type numerical differential formula of the Riesz derivative and its application. Commun. Nonlinear Sci. Numer. Simul., 2023, 123107272
|
| [12] |
Ding H, Li C. Numerical analysis of the high-order scheme of the damped nonlinear space fraction Schrödinger equation. Appl. Math. Lett., 2023, 141108621
|
| [13] |
Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg-Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)
|
| [14] |
Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (I). Abstract and Applied Analysis 2014, 653797 (2014)
|
| [15] |
Ehle, B.L.: High order A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A$$\end{document}-stable methods for the numerical solution of systems of D.E.’s. BIT 8(4), 276–278 (1968)
|
| [16] |
Fan, E., Li, C.: Numerical simulation of blow-up solution to the Caputo-Hadamard fractional differential equation. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1–6 (2023)
|
| [17] |
Fan E, Li C. Diffusion in Allen-Cahn equation: normal vs anomalous. Physica D, 2024, 457133973
|
| [18] |
Fu Y, Song Y, Wang Y. Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation. Math. Comput. Simul., 2019, 166: 206-223.
|
| [19] |
Fu, Z., Shen, J., Yang, J.: Higher-Order Energy-Decreasing Exponential Time Differencing Runge-Kutta methods for Gradient Flows (2024). https://arxiv.org/abs/2402.15142
|
| [20] |
Furati KM, Yousuf M, Khaliq AQM. Fourth-order methods for space fractional reaction-diffusion equations with non-smooth data. Int. J. Comput. Math., 2018, 95(6/7): 1240-1256.
|
| [21] |
Garzón-Alvarado DA, Galeano CH, Mantilla JM. Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: first example. Appl. Math. Model., 2012, 36(10): 5029-5045.
|
| [22] |
Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, 2010, Berlin, Heidelberg. Springer
|
| [23] |
Hochbruck, M., Ostermann, A.: Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math. 53(2), 323–339 (2005)
|
| [24] |
Hull JC, Basu S. Options, Futures, and Other Derivatives, 2016, India. Pearson Education
|
| [25] |
Hundsdorfer W, Verwer J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2003, Berlin, Heidelberg. Springer.
|
| [26] |
Ionescu C, Lopes A, Copot D, Machado JT, Bates JH. The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul., 2017, 51: 141-159.
|
| [27] |
Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, 2006, Elsevier, Amsterdam. Academic Press
|
| [28] |
Li C, Zeng F. Numerical Methods for Fractional Calculus, 2015, USA. Chapman & Hall/CRC.
|
| [29] |
Liang J, Song S, Zhou W, Fu H. Analysis of the damped nonlinear space-fractional Schrödinger equation. Appl. Math. Comput., 2018, 320: 495-511. DOI:
|
| [30] |
Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 1978, 20(4): 801-836.
|
| [31] |
Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 2003, 45(1): 3-49.
|
| [32] |
Nørsett SP. C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C$$\end{document}-polynomials for rational approximation to the exponential function. Numer. Math., 1975, 25(1): 39-56.
|
| [33] |
Nørsett, S.P.: Restricted Padé approximations to the exponential function. SIAM J. Numer. Anal. 15(5), 1008–1029 (1978)
|
| [34] |
Ortigueira MD. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 2006, 2006: 48391
|
| [35] |
Partohaghighi M, Asante-Asamani E, Iyiola OS. A robust numerical scheme for solving Riesz-tempered fractional reaction-diffusion equations. J. Comput. Appl. Math., 2024, 450115992
|
| [36] |
Podlubny I. Fractional Differential Equations, 1998, California, USA. Academic Press
|
| [37] |
Rossi F, Ristori S, Rustici M, Marchettini N, Tiezzi E. Dynamics of pattern formation in biomimetic systems. J. Theor. Biol., 2008, 255(4): 404-412.
|
| [38] |
Sarwar, S., Yousuf, M.: Runge-Kutta type time stepping methods for space fractional reaction diffusion model with restricted Padé approximation. IFAC-PapersOnLine 58(12), 318–323 (2024)
|
| [39] |
Siemieniuch J. Properties of certain rational approximations to e-z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm e}^{- z}$$\end{document}. BIT Numer. Math., 1976, 16: 172-191.
|
| [40] |
Yi F, Wei J, Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ., 2009, 246(5): 1944-1977.
|
| [41] |
Yousuf M, Furati KM, Khaliq AQM. A fourth-order time-stepping method for two-dimensional, distributed-order, space-fractional, inhomogeneous parabolic equations. Fractal and Fractional, 2022, 6(10): 592.
|
| [42] |
Yousuf, M., Sarwar, S.: Highly efficient numerical algorithm for nonlinear space variable-order fractional reaction-diffusion models. Fractal and Fractional 7(9), 688 (2023)
|
| [43] |
Yousuf M, Furati KM, Khaliq AQM. High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput. Math. Appl., 2020, 80(1): 204-226.
|
| [44] |
Yousuf M, Furati KM, Khaliq AQM. A hybrid fourth order time stepping method for space distributed order nonlinear reaction-diffusion equations. Comput. Math. Appl., 2023, 151: 116-126.
|
| [45] |
Yousuf M, Sarwar S. A fast third order algorithm for two dimensional inhomogeneous fractional parabolic partial differential equations. Int. J. Comput. Math., 2024, 101(1): 1-20.
|
RIGHTS & PERMISSIONS
Shanghai University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.