High-Order Time-Stepping Methods for Two-Dimensional Space-Fractional Reaction-Diffusion Models

Shahzad Sarwar

Communications on Applied Mathematics and Computation ›› : 1 -28.

PDF
Communications on Applied Mathematics and Computation ›› :1 -28. DOI: 10.1007/s42967-025-00528-9
Original Paper
research-article

High-Order Time-Stepping Methods for Two-Dimensional Space-Fractional Reaction-Diffusion Models

Author information +
History +
PDF

Abstract

In this paper, we developed novel fourth-order Runge-Kutta type exponential time differencing (ETD) A-stable and L-stable methods for space-fractional nonlinear reaction-diffusion equations with initial non-smooth or smooth data. Based on compact finite differences, a fourth-order technique is used for spatial discretization, while ETD is employed to discretize the time. Our novel numerical schemes have the benefit of explicitly handling the nonlinear term. The well-known issue of numerical instability related to computing the matrix exponential is addressed using the real single-pole rational approximation, namely the restricted Padé approximation approach. The corresponding ETD-A-stable and L-stable methods are obtained. Convergence, error estimates, and stability analysis of the suggested approaches are studied theoretically. Under a global Lipschitz continuity assumption, the unconditional

L2
numerical stability is established. Moreover, the convergence order of
O(k4)
for the derived methods is also studied in the norm
L2
. Numerical experiments demonstrate the advantages of the methods in computational accuracy, efficiency, and reliability.

Keywords

Riesz derivative / Reaction-diffusion equation / Allen-Cahn equation / Exponential time-differencing (ETD) method / The damped nonlinear fractional Schrödinger equations / Numerical method / Stability / 26A33 / 35K57 / 65M12 / 65M22

Cite this article

Download citation ▾
Shahzad Sarwar. High-Order Time-Stepping Methods for Two-Dimensional Space-Fractional Reaction-Diffusion Models. Communications on Applied Mathematics and Computation 1-28 DOI:10.1007/s42967-025-00528-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 1979, 27(6): 1085-1095.

[2]

Alt R. A-stable one-step methods with step-size control for stiff systems of ordinary differential equations. J. Comput. Appl. Math., 1978, 4(1): 29-35.

[3]

Alzahrani SS, Khaliq AQM, Biala TA, Furati KM. Fourth-order time stepping methods with matrix transfer technique for space-fractional reaction-diffusion equations. Appl. Numer. Math., 2019, 146: 123-144.

[4]

Asante-Asamani EO, Khaliq AQM, Wade BA. A real distinct poles exponential time differencing scheme for reaction-diffusion systems. J. Comput. Appl. Math., 2016, 299: 24-34.

[5]

Beylkin G, Keiser JM, Vozovoi L. A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys., 1998, 147(2): 362-387.

[6]

Cao D, Li C. Quenching phenomenon in the Caputo-Hadamard time-fractional Kawarada problem: analysis and computation. Math. Comput. Simul., 2025, 233: 21-38.

[7]

Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

[8]

Company R, Egorova VN, Jódar L. Conditional full stability of positivity-preserving finite difference scheme for diffusion-advection-reaction models. J. Comput. Appl. Math., 2018, 341: 157-168.

[9]

Cox SM, Matthews PC. Exponential time differencing for stiff systems. J. Comput. Phys., 2002, 176(2): 430-455.

[10]

Dahlquist GG. A special stability problem for linear multistep methods. BIT Numer. Math., 1963, 3(1): 27-43.

[11]

Ding H. The construction of an optimal fourth-order fractional-compact-type numerical differential formula of the Riesz derivative and its application. Commun. Nonlinear Sci. Numer. Simul., 2023, 123107272

[12]

Ding H, Li C. Numerical analysis of the high-order scheme of the damped nonlinear space fraction Schrödinger equation. Appl. Math. Lett., 2023, 141108621

[13]

Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg-Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)

[14]

Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (I). Abstract and Applied Analysis 2014, 653797 (2014)

[15]

Ehle, B.L.: High order A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A$$\end{document}-stable methods for the numerical solution of systems of D.E.’s. BIT 8(4), 276–278 (1968)

[16]

Fan, E., Li, C.: Numerical simulation of blow-up solution to the Caputo-Hadamard fractional differential equation. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1–6 (2023)

[17]

Fan E, Li C. Diffusion in Allen-Cahn equation: normal vs anomalous. Physica D, 2024, 457133973

[18]

Fu Y, Song Y, Wang Y. Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation. Math. Comput. Simul., 2019, 166: 206-223.

[19]

Fu, Z., Shen, J., Yang, J.: Higher-Order Energy-Decreasing Exponential Time Differencing Runge-Kutta methods for Gradient Flows (2024). https://arxiv.org/abs/2402.15142

[20]

Furati KM, Yousuf M, Khaliq AQM. Fourth-order methods for space fractional reaction-diffusion equations with non-smooth data. Int. J. Comput. Math., 2018, 95(6/7): 1240-1256.

[21]

Garzón-Alvarado DA, Galeano CH, Mantilla JM. Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: first example. Appl. Math. Model., 2012, 36(10): 5029-5045.

[22]

Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, 2010, Berlin, Heidelberg. Springer

[23]

Hochbruck, M., Ostermann, A.: Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math. 53(2), 323–339 (2005)

[24]

Hull JC, Basu S. Options, Futures, and Other Derivatives, 2016, India. Pearson Education

[25]

Hundsdorfer W, Verwer J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2003, Berlin, Heidelberg. Springer.

[26]

Ionescu C, Lopes A, Copot D, Machado JT, Bates JH. The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul., 2017, 51: 141-159.

[27]

Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, 2006, Elsevier, Amsterdam. Academic Press

[28]

Li C, Zeng F. Numerical Methods for Fractional Calculus, 2015, USA. Chapman & Hall/CRC.

[29]

Liang J, Song S, Zhou W, Fu H. Analysis of the damped nonlinear space-fractional Schrödinger equation. Appl. Math. Comput., 2018, 320: 495-511. DOI:

[30]

Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 1978, 20(4): 801-836.

[31]

Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 2003, 45(1): 3-49.

[32]

Nørsett SP. C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C$$\end{document}-polynomials for rational approximation to the exponential function. Numer. Math., 1975, 25(1): 39-56.

[33]

Nørsett, S.P.: Restricted Padé approximations to the exponential function. SIAM J. Numer. Anal. 15(5), 1008–1029 (1978)

[34]

Ortigueira MD. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 2006, 2006: 48391

[35]

Partohaghighi M, Asante-Asamani E, Iyiola OS. A robust numerical scheme for solving Riesz-tempered fractional reaction-diffusion equations. J. Comput. Appl. Math., 2024, 450115992

[36]

Podlubny I. Fractional Differential Equations, 1998, California, USA. Academic Press

[37]

Rossi F, Ristori S, Rustici M, Marchettini N, Tiezzi E. Dynamics of pattern formation in biomimetic systems. J. Theor. Biol., 2008, 255(4): 404-412.

[38]

Sarwar, S., Yousuf, M.: Runge-Kutta type time stepping methods for space fractional reaction diffusion model with restricted Padé approximation. IFAC-PapersOnLine 58(12), 318–323 (2024)

[39]

Siemieniuch J. Properties of certain rational approximations to e-z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm e}^{- z}$$\end{document}. BIT Numer. Math., 1976, 16: 172-191.

[40]

Yi F, Wei J, Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ., 2009, 246(5): 1944-1977.

[41]

Yousuf M, Furati KM, Khaliq AQM. A fourth-order time-stepping method for two-dimensional, distributed-order, space-fractional, inhomogeneous parabolic equations. Fractal and Fractional, 2022, 6(10): 592.

[42]

Yousuf, M., Sarwar, S.: Highly efficient numerical algorithm for nonlinear space variable-order fractional reaction-diffusion models. Fractal and Fractional 7(9), 688 (2023)

[43]

Yousuf M, Furati KM, Khaliq AQM. High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput. Math. Appl., 2020, 80(1): 204-226.

[44]

Yousuf M, Furati KM, Khaliq AQM. A hybrid fourth order time stepping method for space distributed order nonlinear reaction-diffusion equations. Comput. Math. Appl., 2023, 151: 116-126.

[45]

Yousuf M, Sarwar S. A fast third order algorithm for two dimensional inhomogeneous fractional parabolic partial differential equations. Int. J. Comput. Math., 2024, 101(1): 1-20.

RIGHTS & PERMISSIONS

Shanghai University

PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

/