Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks

Elisabetta Carlini , Valentina Coscetti , Marco Pozza

Communications on Applied Mathematics and Computation ›› : 1 -21.

PDF
Communications on Applied Mathematics and Computation ›› :1 -21. DOI: 10.1007/s42967-025-00527-w
Original Paper
research-article

Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks

Author information +
History +
PDF

Abstract

We examine the numerical approximation of time-dependent Hamilton-Jacobi (HJ) equations on networks, providing a convergence error estimate for the semi-Lagrangian scheme introduced in Carlini and Siconolfi (Numerical analysis of time-dependent HJ equations on networks. 2023. https://doi.org/10.48550/arXiv.2310.06092), where convergence was proven without an error estimate. We derive a convergence error estimate of order one-half. This is achieved by showing the equivalence between two definitions of solutions to this problem proposed in Imbert and Monneau (Ann Sci Éc Norm Supér 50(2): 357–448, 2017) and Siconolfi (J Math Pures Appl 163: 702–738, 2022), a result of independent interest, and applying a general convergence result from Carlini et al. (SIAM J Numer Anal 58(6): 3165–3196, 2020).

Keywords

Error estimate / Hamilton-Jacobi (HJ) equations / Semi-Lagrangian scheme / Embedded networks / 65M15 / 49L25 / 65M12 / 35R02

Cite this article

Download citation ▾
Elisabetta Carlini, Valentina Coscetti, Marco Pozza. Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks. Communications on Applied Mathematics and Computation 1-21 DOI:10.1007/s42967-025-00527-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Homogenization of Hamilton-Jacobi equations: numerical methods. Math. Models Methods Appl. Sci. 18(07), 1115–1143 (2008). https://doi.org/10.1142/s0218202508002978

[2]

Achdou Y, Mannucci P, Marchi C, Tchou N. Deterministic mean field games on networks: a Lagrangian approach. SIAM J. Math. Anal., 2024, 56(5): 6689-6730

[3]

Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-0-8176-4755-1

[4]

Camilli F, Carlini E, Marchi C. A flame propagation model on a network with application to a blocking problem. Discret. Contin. Dyn. Syst. Ser. S, 2018, 11(5): 825-843

[5]

Camilli F, Festa A, Tozza S. A discrete Hughes model for pedestrian flow on graphs. Netw. Heterog. Media, 2017, 12(1): 93-112

[6]

Carlini, E., Festa, A., Forcadel, N.: A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations on networks. SIAM J. Numer. Anal. 58(6), 3165–3196 (2020). https://doi.org/10.1137/19m1260931

[7]

Carlini, E., Siconolfi, A.: Numerical analysis of time-dependent Hamilton-Jacobi equations on networks. https://doi.org/10.48550/arXiv.2310.06092

[8]

Charles, F., Després, B., Mehrenberger, M.: Enhanced convergence estimates for semi-Lagrangian schemes application to the Vlasov-Poisson equation. SIAM J. Numer. Anal. 51(2), 840–863 (2013). https://doi.org/10.1137/110851511

[9]

Clarke FH. Optimization and Nonsmooth Analysis, 1990, Philadelphia, Society for Industrial and Applied Mathematics

[10]

Costeseque, G., Lebacque, J.-P., Monneau, R.: A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic. Numer. Math. 129(3), 405–447 (2014). https://doi.org/10.1007/s00211-014-0643-z

[11]

Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia (2013). https://doi.org/10.1137/1.9781611973051

[12]

Guerand, J., Koumaiha, M.: Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction. Numer. Math. 142(3), 525–575 (2019). https://doi.org/10.1007/s00211-019-01043-9

[13]

Imbert, C., Monneau, R.: Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50(2), 357–448 (2017). https://doi.org/10.24033/asens.2323

[14]

Imbert, C., Monneau, R., Zidani, H.: A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM Control Optim. Calc. Var. 19(1), 129–166 (2012). https://doi.org/10.1051/cocv/2012002

[15]

Lions P-L, Souganidis P. Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions. Rend. Lincei, Mat. Appl., 2017, 28(4): 807-816

[16]

Pozza, M.: Large time behavior of solutions to Hamilton-Jacobi equations on networks. https://doi.org/10.48550/arXiv.2303.03872

[17]

Siconolfi, A.: Time-dependent Hamilton-Jacobi equations on networks. J. Math. Pures Appl. 163, 702–738 (2022). https://doi.org/10.1016/j.matpur.2022.05.020

Funding

MIUR(PRIN Project2022238YY5)

Gruppo Nazionale per il Calcolo Scientifico(CUP_E53C24001950001)

MIUR(PRIN Project2022238YY5)

Avvio alla Ricerca(CUP_B83C24006550001)

European Union - Next Generation EU, Missione 4, Componente 1(CUP_B53C23002010006)

RIGHTS & PERMISSIONS

The Author(s)

PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

/