Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks
Elisabetta Carlini , Valentina Coscetti , Marco Pozza
Communications on Applied Mathematics and Computation ›› : 1 -21.
Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks
We examine the numerical approximation of time-dependent Hamilton-Jacobi (HJ) equations on networks, providing a convergence error estimate for the semi-Lagrangian scheme introduced in Carlini and Siconolfi (Numerical analysis of time-dependent HJ equations on networks. 2023. https://doi.org/10.48550/arXiv.2310.06092), where convergence was proven without an error estimate. We derive a convergence error estimate of order one-half. This is achieved by showing the equivalence between two definitions of solutions to this problem proposed in Imbert and Monneau (Ann Sci Éc Norm Supér 50(2): 357–448, 2017) and Siconolfi (J Math Pures Appl 163: 702–738, 2022), a result of independent interest, and applying a general convergence result from Carlini et al. (SIAM J Numer Anal 58(6): 3165–3196, 2020).
Error estimate / Hamilton-Jacobi (HJ) equations / Semi-Lagrangian scheme / Embedded networks / 65M15 / 49L25 / 65M12 / 35R02
| [1] |
Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Homogenization of Hamilton-Jacobi equations: numerical methods. Math. Models Methods Appl. Sci. 18(07), 1115–1143 (2008). https://doi.org/10.1142/s0218202508002978 |
| [2] |
|
| [3] |
Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-0-8176-4755-1 |
| [4] |
|
| [5] |
|
| [6] |
Carlini, E., Festa, A., Forcadel, N.: A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations on networks. SIAM J. Numer. Anal. 58(6), 3165–3196 (2020). https://doi.org/10.1137/19m1260931 |
| [7] |
Carlini, E., Siconolfi, A.: Numerical analysis of time-dependent Hamilton-Jacobi equations on networks. https://doi.org/10.48550/arXiv.2310.06092 |
| [8] |
Charles, F., Després, B., Mehrenberger, M.: Enhanced convergence estimates for semi-Lagrangian schemes application to the Vlasov-Poisson equation. SIAM J. Numer. Anal. 51(2), 840–863 (2013). https://doi.org/10.1137/110851511 |
| [9] |
|
| [10] |
Costeseque, G., Lebacque, J.-P., Monneau, R.: A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic. Numer. Math. 129(3), 405–447 (2014). https://doi.org/10.1007/s00211-014-0643-z |
| [11] |
Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia (2013). https://doi.org/10.1137/1.9781611973051 |
| [12] |
Guerand, J., Koumaiha, M.: Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction. Numer. Math. 142(3), 525–575 (2019). https://doi.org/10.1007/s00211-019-01043-9 |
| [13] |
Imbert, C., Monneau, R.: Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50(2), 357–448 (2017). https://doi.org/10.24033/asens.2323 |
| [14] |
Imbert, C., Monneau, R., Zidani, H.: A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM Control Optim. Calc. Var. 19(1), 129–166 (2012). https://doi.org/10.1051/cocv/2012002 |
| [15] |
|
| [16] |
Pozza, M.: Large time behavior of solutions to Hamilton-Jacobi equations on networks. https://doi.org/10.48550/arXiv.2303.03872 |
| [17] |
Siconolfi, A.: Time-dependent Hamilton-Jacobi equations on networks. J. Math. Pures Appl. 163, 702–738 (2022). https://doi.org/10.1016/j.matpur.2022.05.020 |
The Author(s)
/
| 〈 |
|
〉 |