An Infinity Norm Upper Bound for the Inverse of $\hbox {SDD}_1$ Matrices and the Application in Linear Complementarity Problems

Yun Li , Shiyun Wang

Communications on Applied Mathematics and Computation ›› : 1 -14.

PDF
Communications on Applied Mathematics and Computation ›› :1 -14. DOI: 10.1007/s42967-025-00523-0
Original Paper
research-article

An Infinity Norm Upper Bound for the Inverse of $\hbox {SDD}_1$ Matrices and the Application in Linear Complementarity Problems

Author information +
History +
PDF

Abstract

The class of SDD$_1$ matrices is an important subclass of H-matrices. The strictly diagonally dominant (SDD) matrices, the doubly strictly diagonally dominant (DSDD) matrices, and the Dashnic Zusmanovich type (DZT) matrices are included in SDD$_1$ matrices. This paper presents an infinity norm upper bound for the inverse of SDD$_1$ matrices using the definition of the matrix norm. We prove that it is sharper than the well-known Varah’s bound for SDD matrices, and it generally performs better than the existing bounds for SDD$_1$, DSDD, and DZT matrices. As an application, an error bound for the linear complementarity problems (LCPs) of B$_1$-matrices is given.

Keywords

$_1$ matrix')">SDD$_1$ matrix / Infinity norm / Linear complementarity problems (LCPs) / 15A45 / 15A48 / 65F05

Cite this article

Download citation ▾
Yun Li, Shiyun Wang. An Infinity Norm Upper Bound for the Inverse of $\hbox {SDD}_1$ Matrices and the Application in Linear Complementarity Problems. Communications on Applied Mathematics and Computation 1-14 DOI:10.1007/s42967-025-00523-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BermanA, PlemmonsRJNonnegative Matrices in the Mathematical Sciences, 1994, Philadelphia, PA. SIAM. .

[2]

Chen, T.T., Li, W., Wu, X., Vong, S.: Error bounds for linear complementarity problems of $M\!B$-matrices. Numer. Algorithms 70, 341–356 (2015)

[3]

Chen, X., Li, Y., Liu, L., Wang, Y.Q.: Infinity norm upper bounds for the inverse of $\mathit{SDD}_{1}$ matrices. AIMS Math. 7, 8847–8860 (2022)

[4]

CottleRW, PangJS, StoneREThe Linear Complementarity Problem, 1992, San Diego. Academic Press.

[5]

CvetkovićL. H-matrix theory vs. eigenvalue localization. Numer. Algorithms, 2007, 42: 229-245.

[6]

Cvetković, L., Dai, P.F., Doroslovaoki, K., Li, Y.T.: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 5020–5024 (2013)

[7]

Cvetković, L., Kostić, V.R., Bru, R., Pedroche, F.: A simple generalization of Gergorin’s theorem. Adv. Comput. Math. 35, 271–280 (2011)

[8]

Cvetković, L., Kostić, V.R., Doroslovačkic, K.: Max-norm bounds for the inverse of S-Nekrasov matrices. Appl. Math. Comput. 218, 9498–9503 (2012)

[9]

DemmelJW. On condition numbers and the distance to the nearest ill-posed problem. Numer. Math., 1987, 51: 251-289.

[10]

García-Esnaola, M., Peña, J.M.: B-Nekrasov matrices and error bounds for linear complementarity problems. Numer. Algorithms 72, 435–445 (2016)

[11]

Kolotilina, L.Y.: On bounding inverse to Nekrasov matrices in the infinity norm. Zap. Nauchn. Sem. POMI. 419, 111–120 (2013)

[12]

Kolotilina, L.Y.: Bounds for the inverses of generalized Nekrasov matrices. J. Math. Sci. 207, 786–794 (2015)

[13]

Kolotilina, L.Y.: On SDD$_{1}$ matrices. J. Math. Sci. 272, 541–557 (2023)

[14]

Kostić, V.R., Cvetković, Lj.: On the inertia of the block H-matrices. Numer. Linear Algebra Appl. 24(5), e2101 (2017). https://doi.org/10.1002/nla.2101

[15]

Kostić, V.R., Cvetković, Lj., Cvetković, D.Lj.: Pseudospectra localizations and their applications. Numer. Linear Algebra Appl. 23, 356–372 (2016)

[16]

Li, C.: Schur complement-based infinity norm bounds for the inverse of SDD matrices. Bull. Malays. Math. Sci. Soc. 43, 3829–3845 (2023)

[17]

Li, C.Q., Cvetković, L., Wei, Y.M., Zhao, J.: An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications. Linear Algebra Appl. 565, 99–122 (2019)

[18]

Li, C.Q., Li, Y.T.: Note on error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 57, 108–113 (2016)

[19]

Lyu, Z., Liu, D., Wang, S., Gao, F.: A note on infinity norm bounds for the inverse of Nekrasov matrices. Math. Meth. Appl. Sci. (2024). https://doi.org/10.1002/mma.10299

[20]

Morača, N.: Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices. J. Comput. Appl. Math. 206, 666–678 (2007)

[21]

MorčaN. Bounds for norms of the matrix inverse and the smallest singular value. Linear Algebra Appl., 2008, 429: 2589-2601.

[22]

Peña, J.M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003)

[23]

Peña, J.M.: Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices. Adv. Comput. Math. 35, 357–373 (2011)

[24]

Sang, C.: Schur complement-based infinity norm bounds for the inverse of DSDD matrices. Bull. Iran. Math. Soc. 47, 1379–1398 (2021)

[25]

Shivakumar, P.N., Williams, J.J., Ye, Q., Marinov, C.A.: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital dynamics. SIAM J. Matrix Anal. Appl. 17, 298–312 (1996)

[26]

VarahJM. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl., 1975, 11: 3-5.

[27]

Wang, S., Liang, X., Zhou, Y., Lyu, Z.: Two infitnity norm bounds for the inverse of Nekrasov matrices. Linear Multilinear Algebra 72(10), 1643–1656 (2023). https://doi.org/10.1080/03081087.2023.2195150

[28]

Zeng, W., Liu, J., Mo, H.: Schur complement-based infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices. Mathematics 11, 2254 (2023)

[29]

ZhangCYNew Advances in Research on H-Matrices, 2017, Cambridge. Science Press.

[30]

Zhao, Y., Liu, L., Wang, F.: Error bounds for linear complementarity problems of SDD$_{1}$ matrices and SDD$_{1}$-B-matrices. AIMS Math. 7, 11862–11878 (2022)

RIGHTS & PERMISSIONS

Shanghai University

PDF

398

Accesses

0

Citation

Detail

Sections
Recommended

/