An Infinity Norm Upper Bound for the Inverse of
Yun Li , Shiyun Wang
Communications on Applied Mathematics and Computation ›› : 1 -14.
An Infinity Norm Upper Bound for the Inverse of
The class of SDD
| [1] |
|
| [2] |
Chen, T.T., Li, W., Wu, X., Vong, S.: Error bounds for linear complementarity problems of $M\!B$-matrices. Numer. Algorithms 70, 341–356 (2015) |
| [3] |
Chen, X., Li, Y., Liu, L., Wang, Y.Q.: Infinity norm upper bounds for the inverse of $\mathit{SDD}_{1}$ matrices. AIMS Math. 7, 8847–8860 (2022) |
| [4] |
|
| [5] |
|
| [6] |
Cvetković, L., Dai, P.F., Doroslovaoki, K., Li, Y.T.: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 5020–5024 (2013) |
| [7] |
Cvetković, L., Kostić, V.R., Bru, R., Pedroche, F.: A simple generalization of Gergorin’s theorem. Adv. Comput. Math. 35, 271–280 (2011) |
| [8] |
Cvetković, L., Kostić, V.R., Doroslovačkic, K.: Max-norm bounds for the inverse of S-Nekrasov matrices. Appl. Math. Comput. 218, 9498–9503 (2012) |
| [9] |
|
| [10] |
García-Esnaola, M., Peña, J.M.: B-Nekrasov matrices and error bounds for linear complementarity problems. Numer. Algorithms 72, 435–445 (2016) |
| [11] |
Kolotilina, L.Y.: On bounding inverse to Nekrasov matrices in the infinity norm. Zap. Nauchn. Sem. POMI. 419, 111–120 (2013) |
| [12] |
Kolotilina, L.Y.: Bounds for the inverses of generalized Nekrasov matrices. J. Math. Sci. 207, 786–794 (2015) |
| [13] |
Kolotilina, L.Y.: On SDD$_{1}$ matrices. J. Math. Sci. 272, 541–557 (2023) |
| [14] |
Kostić, V.R., Cvetković, Lj.: On the inertia of the block H-matrices. Numer. Linear Algebra Appl. 24(5), e2101 (2017). https://doi.org/10.1002/nla.2101 |
| [15] |
Kostić, V.R., Cvetković, Lj., Cvetković, D.Lj.: Pseudospectra localizations and their applications. Numer. Linear Algebra Appl. 23, 356–372 (2016) |
| [16] |
Li, C.: Schur complement-based infinity norm bounds for the inverse of SDD matrices. Bull. Malays. Math. Sci. Soc. 43, 3829–3845 (2023) |
| [17] |
Li, C.Q., Cvetković, L., Wei, Y.M., Zhao, J.: An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications. Linear Algebra Appl. 565, 99–122 (2019) |
| [18] |
Li, C.Q., Li, Y.T.: Note on error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 57, 108–113 (2016) |
| [19] |
Lyu, Z., Liu, D., Wang, S., Gao, F.: A note on infinity norm bounds for the inverse of Nekrasov matrices. Math. Meth. Appl. Sci. (2024). https://doi.org/10.1002/mma.10299 |
| [20] |
Morača, N.: Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices. J. Comput. Appl. Math. 206, 666–678 (2007) |
| [21] |
|
| [22] |
Peña, J.M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003) |
| [23] |
Peña, J.M.: Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices. Adv. Comput. Math. 35, 357–373 (2011) |
| [24] |
Sang, C.: Schur complement-based infinity norm bounds for the inverse of DSDD matrices. Bull. Iran. Math. Soc. 47, 1379–1398 (2021) |
| [25] |
Shivakumar, P.N., Williams, J.J., Ye, Q., Marinov, C.A.: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital dynamics. SIAM J. Matrix Anal. Appl. 17, 298–312 (1996) |
| [26] |
|
| [27] |
Wang, S., Liang, X., Zhou, Y., Lyu, Z.: Two infitnity norm bounds for the inverse of Nekrasov matrices. Linear Multilinear Algebra 72(10), 1643–1656 (2023). https://doi.org/10.1080/03081087.2023.2195150 |
| [28] |
Zeng, W., Liu, J., Mo, H.: Schur complement-based infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices. Mathematics 11, 2254 (2023) |
| [29] |
|
| [30] |
Zhao, Y., Liu, L., Wang, F.: Error bounds for linear complementarity problems of SDD$_{1}$ matrices and SDD$_{1}$-B-matrices. AIMS Math. 7, 11862–11878 (2022) |
Shanghai University
/
| 〈 |
|
〉 |