PDF
Abstract
The initial value problem (IVP) solutions of two (3+2)-dimensional integrable nonlinear equations, such as generalized Sawada-Kotera (SK) and generalized Date-Jimbo-Kashiwara-Miwa (DJKM) equations, which are constructed by the extension of the corresponding two-dimensional equations, are solved by means of the non-local ${\bar{\partial }}$-method. The above significant results provide a good inspiration for dealing with similar high-dimensional nonlinear equations.
Keywords
Sawada-Kotera (SK) equation
/
Date-Jimbo-Kashiwara-Miwa (DJKM) equation
/
${\bar{\partial }}$-method')">Non-local ${\bar{\partial }}$-method
/
Initial value problem (IVP)
/
35G2
/
45G10
/
45Q05
Cite this article
Download citation ▾
Linlin Gui, Yufeng Zhang, Siqi Han.
Solutions of Initial Value Problems of Two (3+2)-Dimensional Integrable Nonlinear Equations via Non-local ${\bar{\partial }}$-Method.
Communications on Applied Mathematics and Computation 1-13 DOI:10.1007/s42967-025-00520-3
| [1] |
Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H..: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)
|
| [2] |
Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)
|
| [3] |
Beals, R., Coifman, R.R.: Scattering, transformations spectrales et equations d’evolution nonlineare. I. Seminaire Goulaouic-Meyer-Schwartz, Ecole Polytechnique, Palaiseau exp. 22 (1981)
|
| [4] |
Beals, R., Coifman, R.R.: Scattering, transformations spectrales et equations d’evolution nonlineare. II. Seminaire Goulaouic-Meyer-Schwartz, Ecole Polytechnique, Palaiseau exp. 21 (1982)
|
| [5] |
BogdanovLV, ManakovSV. Nonlocal ${\bar{\partial }}$-problem and (2+1)-dimensional soliton equations. J. Phys. A, 1988, 21: L537-L544.
|
| [6] |
BrenigL, FairenV. Analytical approach to initial-value problems in nonlinear systems. J. Math. Phys., 1981, 22: 649-652.
|
| [7] |
Chadan, K., Colton, D., Pivrinta, L., Rundell, W.: An Introduction to Inverse Scattering and Inverse Spectral Problems. Society for Industrial and Applied Mathematics (1987)
|
| [8] |
Chai, X.D., Zhang, Y.F., Chen, Y., Zhao, S.Y.: The ${\bar{\partial }}$-dressing method for the (2+1)-dimensional Jimbo-Miwa equation. Proc. Am. Math. Soc. 150(7), 2879–2887 (2022)
|
| [9] |
ChengL, ZhangY, LinMJ. Lax pair and lump solutions for the (2+1)-dimensional DJKM equation associated with bilinear Bäcklund transformations. Anal. Math. Phys., 2019, 9(4): 1741-1752.
|
| [10] |
Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22, 2197 (2006)
|
| [11] |
ConstantinA, IvanovRI, LenellsJ. Inverse scattering transform for the Degasperis-Procesi equation. Nonlinearity, 2010, 232559.
|
| [12] |
DubrovskyVG. The application of the ${\bar{\partial }}$-dressing method to some integrable (2+1)-dimensional nonlinear equations. J. Phys. A, 1996, 29: 3617-3630.
|
| [13] |
FokasAS. Inverse scattering of first-order systems in the plane related to nonlinear multidimensional equations. Phys. Rev. Lett., 1983, 51: 3-6.
|
| [14] |
FokasAS. Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions. Phys. Rev. Lett., 2006, 96. 190201
|
| [15] |
Fokas, A.S.: Kadomtsev-Petviashvili equation revisited and integrability in 4+2 and 3+1. Stud. Appl. Math. 122, 347–359 (2009)
|
| [16] |
FokasAS. Integrable nonlinear evolution equations in three spatial dimensions. Proc. R. Soc. A, 2022, 47820220074.
|
| [17] |
FokasAS, VanDWMC. Complexification and integrability in multidimensions. J. Math. Phys., 2018, 59091413.
|
| [18] |
Gardner, C.S., Green, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)
|
| [19] |
Ghidaglia, J.M., Saut, J.C.: On the initial value problem for the Davey-Stewartson systems. Nonlinearity 3, 475 (1990)
|
| [20] |
HayashiN, KuniakiN, MasayoshiT. On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension. Math. Z., 1986, 192: 637-650.
|
| [21] |
KânoğluU, SynolakisC. Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett., 2006, 97. 148501
|
| [22] |
KaperHG, LeafGK. Initial value problems for the Carleman equation. Nonlinear Anal., 1980, 4(2): 343-362.
|
| [23] |
KonopelchenkoBG, DubrovskyVG. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A, 1984, 102(1/2): 15-17.
|
| [24] |
LiCZ. $N$ = 2 supersymmetric extension on multi-component D type Drinfeld-Sokolov hierarchy. Phys. Lett. B, 2024, 855. 138771
|
| [25] |
LiCZ, MironovA, OrlovAY. Hopf link invariants and integrable hierarchies. Phys. Lett. B, 2025, 860. 139170
|
| [26] |
LiuYQ, WenXY, WangDS. Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. Comput. Math. Appl., 2019, 78(1): 1-19.
|
| [27] |
LiuYQ, WenXY, WangDS. The $N$-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation. Comput. Math. Appl., 2019, 77(4): 947-966.
|
| [28] |
MaWX. $K$ symmetries and $\tau $ symmetries of evolution equations and their Lie algebras. J. Phys. A: Math. Gen., 1990, 23: 2707-2716.
|
| [29] |
NishidaT, ImaiK. Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci., 1976, 12: 229-239.
|
| [30] |
SunHG, ZhangY, BaleanuD, ChenW, ChenYQ. A new collection of real world applications of fractional calculus in science and engineering. Commu. Nonlinear. Sci., 2018, 64: 213-231.
|
| [31] |
Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34, 1289–1296 (1973)
|
| [32] |
WangHF, ZhangYF. Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations. J. Comput. Appl. Math., 2023, 420. 114812
|
| [33] |
Zhang, Y.F., Gui, L.L.: Solutions of Cauchy problems for the Caudrey-Dodd-Gibbon-Kotera-Sawada equation in three spatial and two temporal dimensions. Axioms 14, 11 (2024)
|
| [34] |
ZhangYF, GuiLL, FengBL. Solutions of Cauchy problems for the Gardner equation in three spatial dimensions. Symmetry, 2025, 17102.
|
| [35] |
ZhangYF, MeiJQ, ZhangXZ. Symmetry properties and explicit solutions of some nonlinear differential and fractional equations. Appl. Math. Comput., 2018, 337: 408-418
|
| [36] |
ZhangYF, TamHW. Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations. J. Math. Phys., 2013, 54. 013516
|
Funding
National Natural Science Foundation of China(No.11971475)
RIGHTS & PERMISSIONS
Shanghai University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.