Gegenbauer Collocation Discretization of Riesz Derivative of Variable-Order
Hongjun Ma , Wenbin Li , Tinggang Zhao , Zhongqiang Zhang
Communications on Applied Mathematics and Computation ›› : 1 -32.
Gegenbauer Collocation Discretization of Riesz Derivative of Variable-Order
The fractional Laplacian has been extensively applied to model nonlocal phenomena such as anomalous diffusion. In this paper, we propose to employ the Gegenbauer collocation method to discretize one special case of the fractional Laplacian-Riesz fractional derivative of variable-order (VO). We analyze the features of the collocation method for both constant-order and VO cases and develop an efficient preconditioner. We present some approximation errors and several numerical tests to confirm the efficiency of the method.
Gegenbauer orthogonal polynomial / Spectral collocation method / Riesz potential / Fractional derivative / Preconditioner / Fractional Laplacian / Variable-order (VO) / 65K05 / 90C46
| [1] |
Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian. In: Dipierro, S. (ed) Contemporary Research in Elliptic PDEs and Related Topics, Springer INdAM Series, vol. 33. Springer, Cham (2019) |
| [2] |
Abdelkawy, M.A., Alyami, S.A.: Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional. Chaos Solitons Fractals 151, 111279 (2021) |
| [3] |
Abdelkawy, M.A., Soluma, E.M., Al-Dayel, I., Baleanu, D.: Spectral solutions for a class of nonlinear wave equations with Riesz fractional based on Legendre collocation technique. J. Comput. Appl. Math. 423, 114970 (2023) |
| [4] |
Aboelenen, T., Alqawba, M.: Stability analysis and error estimates of local discontinuous Galerkin method for nonlinear fractional Ginzburg-Landau equation with the fractional Laplacian. Eur. Phys. J. Spec. Top. 232, 2607–2617 (2023) |
| [5] |
Aceto, L., Mazza, M.: A rational preconditioner for multi-dimensional Riesz fractional diffusion equations. Comput. Math. Appl. 143, 372–382 (2023) |
| [6] |
Bhrawy, A.H., Zaky, M.A.: Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput. Math. Appl. 73(6), 1100–1117 (2017) |
| [7] |
Bu, W.P., Tang, Y.F., Yang, J.Y.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014) |
| [8] |
Cai, M., Li, C.P.: Regularity of the solution to Riesz-type fractional differential equation. Integral Transforms Spec. Funct. 30(9), 711–742 (2019) |
| [9] |
Cai, M., Li, C.P.: On Riesz derivative. Fract. Calc. Appl. Anal. 22(2), 287–301 (2019) |
| [10] |
Ceretani, A.N., Rautenberg, C.N.: The spatially variant fractional Laplacian. Fract. Calc. Appl. Anal. 26(6), 2837–2873 (2023) |
| [11] |
Chen, L.Z., Mao, Z.P., Li, H.Y.: Jacobi-Galerkin spectral method for eigenvalue problems of Riesz fractional differential equations. arXiv:1803.03556 (2018) |
| [12] |
Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016) |
| [13] |
Chen, X.J., Duan, J.Q., Li, D.F.: A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. Appl. Math. Comput. 246, 452–464 (2019) |
| [14] |
Daoud, M., Laamri, E.H.: Fractional Laplacians: a short survey. Discrete Contin. Dyn. Syst. Ser. S 15(1), 95–116 (2022) |
| [15] |
Deng, W.H.: Anomalous and nonergodic multiscale modeling, analyses and algorithms (in Chinese). Sci. Sin. Math. 53(8), 1039–1066 (2023) |
| [16] |
Ding, H.F.: The construction of an optimal fourth-order fractional-compact-type numerical differential formula of the Riesz derivative and its application. Commun. Nonlinear Sci. Numer. Simul. 123, 107272 (2023) |
| [17] |
Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (iv). Fract. Calc. Appl. Anal. 22(6), 1537–1560 (2019) |
| [18] |
Du, H., Chen, Z.: A new method of solving the Riesz fractional advection-dispersion equation with nonsmooth solution. Appl. Math. Lett. 152, 109022 (2024) |
| [19] |
|
| [20] |
Fukushima, M., Uemura, T.: Jump-type hunt processes generated by lower bounded semi-Dirichlet forms. Ann. Probab. 40(2), 858–889 (2012) |
| [21] |
Heydari, M.H., Avazzadeh, Z.: Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112, 180–190 (2018) |
| [22] |
Jiao, C.Y., Khaliq, A., Li, C.P., Wang, H.X.: Difference between Riesz derivative and fractional Laplacian on the proper subset of ${\mathbb{R}}$. Fract. Calc. Appl. Anal. 24(6), 1716–1734 (2021) |
| [23] |
Lai, J.J., Liu, F.W., Anh, V.V., Liu, Q.X.: A space-time finite element method for solving linear Riesz space fractional partial differential equations. Numer. Algorithms 88, 499–520 (2021) |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Lischke, A., Pang, G.F., Gulian, M., Song, F.Y., Glusa, C., Zheng, X.N., Mao, Z.P., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020) |
| [29] |
Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017) |
| [30] |
Mao, Z.P., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016) |
| [31] |
Mazza, M., Donatelli, M., Manni, C., Speleers, H.: On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties. Numer. Linear Algebra Appl. 30, e2462 (2023) |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Ray, S.S.: Two competent novel techniques based on two-dimensional wavelets for nonlinear variable-order Riesz space-fractional Schrödinger equations. J. Comput. Appl. Math. 424, 114971 (2023) |
| [36] |
She, Z.H., Qiu, L.M.: Fast ttts iteration methods for implicit Runge-Kutta temporal discretization of Riesz space fractional advection-diffusion equations. Comput. Math. Appl. 141, 42–53 (2023) |
| [37] |
|
| [38] |
Shen, J., Wang, Y.W., Xia, J.L.: Fast structured Jacobi-Jacobi transforms. Math. Comput. 88(318), 1743–1772 (2019) |
| [39] |
Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006) |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Wang, D.L., Xiao, A.G., Yang, W.: Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013) |
| [45] |
Xie, C.P., Fang, S.M.: Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions. Appl. Numer. Math. 176, 1–18 (2022) |
| [46] |
Zafarghandi, F.S., Mohammadi, M.: Numerical approximations for the Riesz space fractional advection-dispersion equations via radial basis functions. Appl. Numer. Math. 144, 59–82 (2019) |
| [47] |
Zeng, F.H., Liu, F.W., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014) |
| [48] |
|
| [49] |
|
| [50] |
Zhang, H., Liu, F.W., Jiang, X.Y., Zeng, F.H., Turner, I.: A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 76, 2460–2476 (2018) |
| [51] |
|
| [52] |
|
| [53] |
Zhao, T.G., Zhao, L.J.: Jacobian spectral collocation method for spatio-temporal coupled Fokker-Planck equation with variable-order fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 124, 107305 (2023) |
| [54] |
Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36(6), A2865–2886 (2014) |
| [55] |
Zheng, X.C., Wang, H., Qiu, W.L.: Numerical approximation for variable-exponent fractional diffusion-wave equation. arxiv:2406.02941 (2024) |
Shanghai University
/
| 〈 |
|
〉 |