PDF
Abstract
Nonsingular H-matrices play an important role in economic mathematics and cybernetics. In this paper, by using the scaling technique for inequalities and constructing a positive diagonal matrix, some new criteria for nonsingular H-matrices are derived. Additionally, a necessary condition for identifying nonsingular H-matrices is presented. Finally, some numerical examples are provided to illustrate the validity of our results.
Keywords
H-matrices
/
Diagonally dominant matrix
/
Irreducibility
/
Nonzero elements chain
/
15A15
/
15A48
/
65F05
Cite this article
Download citation ▾
Yan Li, Dekun Wen, Min Hui, Yaqiang Wang.
Some New Criteria for Identifying H-Matrices.
Communications on Applied Mathematics and Computation 1-18 DOI:10.1007/s42967-025-00516-z
| [1] |
ChenXY, WangYQ. Subdirect sums of ${\rm SDD}_{1}$ matrices. J. Math., 2020, 2020: 1-20
|
| [2] |
DaiPF, LiJP, ZhaoSY. Infinity norm bounds for the inverse for ${\rm GSDD}_{1}$ matrices using scaling matrices. Comput. Appl. Math., 2023, 42: 1-21.
|
| [3] |
FangXF, HuangTZ. $\alpha $-Connective diagonally dominant matrices and $M$-matrices. Chin. J. Eng. Math., 2005, 22: 123-127
|
| [4] |
GanTB, HuangTZ. Simple criteria for nonsingular $H$-matrices. Linear Algebra Appl., 2003, 374: 317-326.
|
| [5] |
GanTB, HuangTZ. Practical sufficient conditions for nonsingular $H$-matrices. Math. Numer. Sin., 2004, 26(1): 109-116
|
| [6] |
GanTB, HuangTZ, EvansDJ. Sufficient conditions for $H$-matrices. Int. J. Comput. Math., 2005, 82(2): 247-258.
|
| [7] |
HuJGIterative Solution of Linear Algebraic Equation, 1991, Beijing. Science Press.
|
| [8] |
HuangTZ. Some simple determinate conditions for nonsingular $H$-matrices. Math. Numer. Sin., 1993, 15(3): 318-328
|
| [9] |
JiangWW, QingT. A set of new criteria for the iterative discrimination of subdivision of nonsingular $H$-matrices. Adv. Appl. Math., 2020, 09: 50-59.
|
| [10] |
KolotilinaLY. On bounding inverses to Nekrasov matrices in the infinity norm. J. Math. Sci., 2014, 199(4): 432-437.
|
| [11] |
Kolotilina, L.Y.: On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses. J. Math. Sci. 240(6), 799–812 (2019)
|
| [12] |
LengC. Criteria for nonsingular $H$-matrices. Acta Math. Appl. Sin., 2011, 34: 50-56
|
| [13] |
Li, W.: On Nekrasov matrices. Linear Algebra Appl. 28(1/2/3), 87–96 (1998)
|
| [14] |
LiY, ChenXY, WangYQ. Some new criteria for identifying $H$-matrices. Filomat, 2024, 38(4): 1375-1387.
|
| [15] |
LiuCT, XuJ, XuHJ. New criteria for nonsingular $H$-matrices. Chin. J. Eng. Math., 2020, 37(1): 75-88
|
| [16] |
LiuP, SangHF, LiM, HuangGR, NiuH. New criteria for nonsingular $H$-matrices. AIMS Math., 2023, 08: 17484-17502.
|
| [17] |
LuLZ, AhmedZ, GuanJR. Numerical methods for a quadratic matrix equation with a nonsingular $M$-matrix. Appl. Math. Lett., 2016, 52: 46-52.
|
| [18] |
OstrowskiA. Determinanten mit uberwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen. Comment. Math. Helv., 1956, 30(1): 175-210.
|
| [19] |
PangMX. Determinants and applications of the generalized diagonally dominant matrices. Chin. Ann. Math., 1985, 6A(3): 323-330
|
| [20] |
PlemmonsRJ, BermanANonnegative Matrices in the Mathematical Sciences, 1979, New York. Academic Press.
|
| [21] |
PlemmonsRJ, BermanANonnegative Matrices in the Mathematical Sciences, 1994, Philadelphia. SIAM Press. 1623
|
| [22] |
ShivakumarPN, ChewKH. A sufficient condition for nonvanishing of determinants. Proc. Am. Math. Soc., 1974, 43: 63-66.
|
| [23] |
VarahJM. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl., 1975, 11: 3-5.
|
| [24] |
VargaRS. On recurring theorems on diagonal dominance. Linear Algebra Appl., 1976, 13: 1-9.
|
| [25] |
WangYY, XuZ, LuQ. Iterative criteria for generalized Nekrasov matrices. Numer. Math. A J. Chin. Univ., 2015, 37(1): 19-30
|
| [26] |
XiongY. New upper bounds for the inverse of $H$-matrices including $S$-SDD matrices and linear complementarity problems. J. Math. Res. Appl., 2024, 44(02): 170-186
|
Funding
Natural Science Basic Research Program of Shaanxi, China(2020JM-622)
RIGHTS & PERMISSIONS
Shanghai University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.