Some New Criteria for Identifying H-Matrices

Yan Li , Dekun Wen , Min Hui , Yaqiang Wang

Communications on Applied Mathematics and Computation ›› : 1 -18.

PDF
Communications on Applied Mathematics and Computation ›› :1 -18. DOI: 10.1007/s42967-025-00516-z
Original Paper
research-article

Some New Criteria for Identifying H-Matrices

Author information +
History +
PDF

Abstract

Nonsingular H-matrices play an important role in economic mathematics and cybernetics. In this paper, by using the scaling technique for inequalities and constructing a positive diagonal matrix, some new criteria for nonsingular H-matrices are derived. Additionally, a necessary condition for identifying nonsingular H-matrices is presented. Finally, some numerical examples are provided to illustrate the validity of our results.

Keywords

H-matrices / Diagonally dominant matrix / Irreducibility / Nonzero elements chain / 15A15 / 15A48 / 65F05

Cite this article

Download citation ▾
Yan Li, Dekun Wen, Min Hui, Yaqiang Wang. Some New Criteria for Identifying H-Matrices. Communications on Applied Mathematics and Computation 1-18 DOI:10.1007/s42967-025-00516-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenXY, WangYQ. Subdirect sums of ${\rm SDD}_{1}$ matrices. J. Math., 2020, 2020: 1-20

[2]

DaiPF, LiJP, ZhaoSY. Infinity norm bounds for the inverse for ${\rm GSDD}_{1}$ matrices using scaling matrices. Comput. Appl. Math., 2023, 42: 1-21.

[3]

FangXF, HuangTZ. $\alpha $-Connective diagonally dominant matrices and $M$-matrices. Chin. J. Eng. Math., 2005, 22: 123-127

[4]

GanTB, HuangTZ. Simple criteria for nonsingular $H$-matrices. Linear Algebra Appl., 2003, 374: 317-326.

[5]

GanTB, HuangTZ. Practical sufficient conditions for nonsingular $H$-matrices. Math. Numer. Sin., 2004, 26(1): 109-116

[6]

GanTB, HuangTZ, EvansDJ. Sufficient conditions for $H$-matrices. Int. J. Comput. Math., 2005, 82(2): 247-258.

[7]

HuJGIterative Solution of Linear Algebraic Equation, 1991, Beijing. Science Press.

[8]

HuangTZ. Some simple determinate conditions for nonsingular $H$-matrices. Math. Numer. Sin., 1993, 15(3): 318-328

[9]

JiangWW, QingT. A set of new criteria for the iterative discrimination of subdivision of nonsingular $H$-matrices. Adv. Appl. Math., 2020, 09: 50-59.

[10]

KolotilinaLY. On bounding inverses to Nekrasov matrices in the infinity norm. J. Math. Sci., 2014, 199(4): 432-437.

[11]

Kolotilina, L.Y.: On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses. J. Math. Sci. 240(6), 799–812 (2019)

[12]

LengC. Criteria for nonsingular $H$-matrices. Acta Math. Appl. Sin., 2011, 34: 50-56

[13]

Li, W.: On Nekrasov matrices. Linear Algebra Appl. 28(1/2/3), 87–96 (1998)

[14]

LiY, ChenXY, WangYQ. Some new criteria for identifying $H$-matrices. Filomat, 2024, 38(4): 1375-1387.

[15]

LiuCT, XuJ, XuHJ. New criteria for nonsingular $H$-matrices. Chin. J. Eng. Math., 2020, 37(1): 75-88

[16]

LiuP, SangHF, LiM, HuangGR, NiuH. New criteria for nonsingular $H$-matrices. AIMS Math., 2023, 08: 17484-17502.

[17]

LuLZ, AhmedZ, GuanJR. Numerical methods for a quadratic matrix equation with a nonsingular $M$-matrix. Appl. Math. Lett., 2016, 52: 46-52.

[18]

OstrowskiA. Determinanten mit uberwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen. Comment. Math. Helv., 1956, 30(1): 175-210.

[19]

PangMX. Determinants and applications of the generalized diagonally dominant matrices. Chin. Ann. Math., 1985, 6A(3): 323-330

[20]

PlemmonsRJ, BermanANonnegative Matrices in the Mathematical Sciences, 1979, New York. Academic Press.

[21]

PlemmonsRJ, BermanANonnegative Matrices in the Mathematical Sciences, 1994, Philadelphia. SIAM Press. 1623

[22]

ShivakumarPN, ChewKH. A sufficient condition for nonvanishing of determinants. Proc. Am. Math. Soc., 1974, 43: 63-66.

[23]

VarahJM. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl., 1975, 11: 3-5.

[24]

VargaRS. On recurring theorems on diagonal dominance. Linear Algebra Appl., 1976, 13: 1-9.

[25]

WangYY, XuZ, LuQ. Iterative criteria for generalized Nekrasov matrices. Numer. Math. A J. Chin. Univ., 2015, 37(1): 19-30

[26]

XiongY. New upper bounds for the inverse of $H$-matrices including $S$-SDD matrices and linear complementarity problems. J. Math. Res. Appl., 2024, 44(02): 170-186

Funding

Natural Science Basic Research Program of Shaanxi, China(2020JM-622)

RIGHTS & PERMISSIONS

Shanghai University

PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

/